Contoh Soal Dan Pembahasan Trigonometri Matematika

Contoh Soal Dan Pembahasan Trigonometri Matematika

Soal dan pembahasan trigonometri di bidang matematika

Daftar Isi

1. Soal dan pembahasan trigonometri di bidang matematika


Bidang Studi: Matematika
Bab: Trigonomètri
Tingkatan: Kelas X SMA
________________________

Contoh soal trigonomètri:

1. Tentukan nilai 2 cos 75° cos 15°
Jawab :
2 cos 75° cos 15°
= cos (75 + 15)° + cos (75 - 15)°
= cos 90° + cos 60°
= 0 + 1 / 2
= 1 / 2

2. Diketahui segitiga ABC, dengan panjang AB 3 cm, AC 5 cm, dan BC 4 cm. Tentukan nilai cos A!
Jawab:
cos A = AB^2 + AC^2 - BC^2/ 2(AB. AC)
cos A = 3^2 + 5^2 - 4^2 / 2(3 x 5)
cos A = 9 + 25 - 16 / 2(15)
cos A = 18 / 30
.
.
maaf kalo salah
semoga membantu ^..^


2. buatkan 50 soal dan pembahasannya matematika tentang trigonometri 


Limit fungsi trigonometri adalah nilai pendekatan suatu sudut pada fungsi trigonometri. Atau lim x→ ∞ f(x), dan f(x) merupakan fungsi trigonometri maka nilai dari limit tersebut disebut limit fungsi trigonometri             . Perhitungan limit fungsi trigonometri sebenarnya tidak jauh berbeda dari perhitungan limit fungsi aljabar, tetapi ada rumus tambahan yaitu rumus-rumus identitas trigonometri yang sangat  berguna untuk menyelesaikan persoalan menentukan nilai limit fungsi trigonometri. Sekarang kita pelajari dahulu rumus-rumus pendukung tersebut:
contoh soal :

semoga membantu ^_^



3. contoh soal trigonometri dan pembahasannya


Diketahui p dan q adalah sudut lancip dan p – q = 30°. Jika cos p sin q = 1/6 , maka nilai dari sin p cos q = …
a. 1/6. b. 2/6 c. 3/6 d. 4/6 e. 5/6 Jawaban :
p – q = 30°
sin (p – q)= sin 30°
sin p cos q – cos p sin q = ½
sin p cos q – 1/6 = ½
sin p cos q = ½ + 1/6 = 4/6
jadi nilai sin p cos q = 4/6
ini contoh soal dan pembahasannya .

4. Soal Matematika Trigonometri


Trigonometri

sin 2a = 2 sin a cos a, maka sin 2(x+y) = 2 sin (x+y) cos (x+y)
.
sin x + cos y = 1 --> (sin x + cos y)² = 1²
sin² x + cos² y + 2 sin x cos y  = 1 ...(1)

cos x +sin y =  3/2 --> (cos x + sin y)² = (3/2)²
cos² x+ sin² y + 2 cos x sin y = 9/4 ...(2)

(1) + (2)
sin² x + cos² x + sin² y + cos² y + 2 sin x cos y + 2 cos x sin y = 1+9/4
1 + 1 + 2 (sin x cos y + cos x sin y) = 13/4
sin x cos y + cos x sin y = 1/2 (13/4 - 2) = 1/2 (5/4) = 5/8
sin(x +y) = 5/8
cos(x+y) = √(1- (5/8)² = √(1- 25/64)= √(39/64)

2 sin (x+y) cos (x+y) = 2 (5/8)(1/8 √39) = (10/64)√39
2 sin (x+y) cos(x+y) = 5/32 √39




5. soal matematika trigonometri​


Jawaban:

1. sina = 1.4

2. AC = 13 satuan panjang

3. sina = 5/6

4. 2sina cosa = 3/5

Penyelesaian:

Terlampir pada gambar


6. tolong kasih contoh soal pembuktian identitas trigonometri beserta pembahasan yaa.. makasi


[tex]\bigstar \underline {\text{Captain Here}} \bigstar \\ \\ \text{Buktikan bahwa }\hspace{0,2cm}tanx . sinx+cosx=secx\hspace{0,1cm} \\ \\ Bukti: \\ \\ tenxsinx+cosx= \frac{sinx}{cosx} . sinx+cosx \\ .\hspace{2,44cm} = \frac{sin^2x+cos^2x}{cosx} \\ .\hspace{2,44cm} = \frac{1}{cosx} \\ .\hspace{2,44cm} = secx \\ \\ \bold{Terbukti}[/tex]

7. contoh soal logika dan pembahasan tentang persamaan kuadrat dan trigonometri


soal logika >> Tentukan negasi dari pernyataan-pernyataan berikut:

a) Hari ini Jakarta banjir.

b) Kambing bisa terbang.

c) Didi anak bodoh

d) Siswa-siswi SMANSA memakai baju batik pada hari

Persamaan kuadrat merupakan bentuk persamaan yang pangkat terbesar variabelnya adalah 2.

Trigonometri merupakan cabang ilmu matematika yang mempelajari tentang garis dan sudut suatu segitiga.

Hubungan antara garis dan sudut ini lah yang akan menjadi fungsi-fungsi trigonometri.



8. Poin Gede !!! Tolong Yang Jago MatematikaBuatlah Contoh Soal Matematika Bebas Tentang : Limit Fungsi Trigonometri Beserta Penjelasan dan Pembahasannya.Mohon Bantuannya ya ^_^


Kelas : XI
Pelajaran : Matematika
Kategori : Limit Fungsi Trigonometri

Pembahasan terlampir

9. Soal tentang identitas trigonometri dan pembahasannya


Itu jawabannya dibawah ini

Semoga membantu

10. soal trigonometri pilihan ganda dan pembahasannya


gak ada soalnya gimana mau ngerjain

11. 2 contoh soal tentang persamaanTrigonometri sekalian denganPembahasannya​


Jawaban:

1.untuk 0°≤×≥ 360° tentukan himpunan penyelesaian dari cos × = ½

jawab: { 60°,300°}

Penjelasan dengan langkah-langkah:

cos x= ½

(a) x = 60° + k.360°

k = 0. ×=60+0=60° (m)

k = 1. ×=60+360=420° (Tm)

atau

(b) x = -60° + k. 360

x= -60 + k.360

k = 0. x = -60 + 0= -60° (Tm)

k= 1. x = -60+360° = 300° (m)

hp= { 60°,300° } (B)

semoga membantu


12. tuliskan contoh soal cerita beserta jawaban/pembahasan nya materi trigonometri


Sebuah kapal berlayar dari pelabuhan A ke pelabuhan B dengan kecepatan 40 km/jam selama 2 jam dengan arah 030°, kemudian melanjutkan perjalanan dari pelabuhan B menuju pelabuhan C dengan kecepatan 60 km/jam selama 2,5 jam dengan arah 150°. Buatlah sketsa perjalanan kapal dan tentukan jarak antara pelabuhan A dan C!

Pembahasan:

Jarak = kecepatan / waktu
Jarak pelabuhan A ke B adalah 40 / 2 = 20 km
Jarak pelabuhan B ke C adalah 60 / 2,5 = 24 km

Perhatikan gambar terlampir.
Besar sudut ABC adalah 30° + 30° = 60°
Gunakan aturan cosinus untuk mencari AC

AC² = AB² + BC² - [2 x AB x BC x cos ∠ABC]
AC² = 20² + 24² - [2 x 20 x 24 x cos 60°]
AC² = 976 - [2 x 20 x 24 x ¹/₂]
AC² = 976 - 480
AC = √ 496
Diperoleh jarak antara pelabuhan A dan C sejauh 4√31 km

13. 10 contoh Soal dan Pembahasan soal UN SMA bab Trigonometri


Maaf kalo salah


Semoga membantu☺

14. contoh soal trigonometri kelas 10 dan pembahasannya dong


Nyatakan dalam sudut lancip
1. sin 100⁰
   pnylsaian : sin 100⁰=sin ( 180-100)⁰
                                     =sin 80⁰
2. sin 146
   pnylsaian : sin 146⁰ = sin ( 180-146)⁰
                                      = sin 34⁰
3. cos 95⁰
   pnylesaian : cos 95⁰ = cos  (180-95)⁰
                                      = -cos 85⁰
4. tan 136⁰
  pnyelesaian : tan 136⁰=tan (180-136)⁰
                                        = -tan 44
5.  sin 193
  pnyelesaian sin 193⁰ =sin(180+193)⁰
                                       = -sin 13⁰
6. cos 200⁰
  pnyelesaian cos 200⁰=cos(180+200)⁰
                                       =- cos 20⁰
7. sin (-13)⁰
 pnyelesaian sin (-13) ⁰= -sin 13⁰
8. cos (-35)⁰
  pnyelesaian cos (-35)⁰= cos 35⁰ -> khusus cos tettap +
9. tan (-68)
  pnyelesaian : tan (-68)=tan 68
10. cos 330⁰
    penyelesaian: cos 330⁰=cos(360-330)
                                            =cos 60
                                            =1/2√3Tentukan perbandingan trigonometri sudut lancipnya

1.  sin 300°
2.  cos 315°
3.  tan 225°

pembahasan

1.  sin 300° = sin (360 - 60)°
                   = -sin 60°
                   = -1/2 √3

2.  cos 315° = cos (270 + 45)°
                    = sin 45°
                    = 1/2 √2

3.  tan 225° = tan (180 + 45)°
                    = tan 45°
                    = 1

15. Buatlah 5 contoh soal integral beserta pembahasannya ! (bukan integral fungsi trigonometri)


1. ∫(x^2 + 4x + 5) dx

Jawaban:

jadiin 3 bagian: ∫x^2 dx, ∫4x dx, dan ∫5 dx

jadi,

∫(x^2 + 4x + 5) dx = ∫x^2 dx + ∫4x dx + ∫5 dx

= (x^3 / 3) + (4x^2 / 2) + (5x) + C

= (x^3 / 3) + 2x^2 + 5x + C, dengan C merupakan konstanta integrasi.

2. ∫(5x^4 - 3x^3 + 2x - 7) dx

Jawaban:

sama juga jadiin 3 : ∫5x^4 dx, ∫-3x^3 dx, ∫2x dx, dan ∫-7 dx

∫(5x^4 - 3x^3 + 2x - 7) dx = ∫5x^4 dx - ∫3x^3 dx + ∫2x dx - ∫7 dx

= (5x^5 / 5) - (3x^4 / 4) + (2x^2 / 2) - (7x) + C

= x^5 - (3/4)x^4 + x^2 - 7x + C, dengan C merupakan konstanta integrasi.

3. ∫(2x^2 + 5x - 3) dx

Jawaban:

sama juga jadiin 3 : ∫2x^2 dx, ∫5x dx, dan ∫-3 dx

∫(2x^2 + 5x - 3) dx = ∫2x^2 dx + ∫5x dx - ∫3 dx

= (2x^3 / 3) + (5x^2 / 2) - (3x) + C

= (2/3)x^3 + (5/2)x^2 - 3x + C, dengan C merupakan konstanta integrasi.

4. ∫(x^3 + 2x^2 + x + 1) dx

Jawaban:

jadiin 4 bagian yang terpisah : ∫x^3 dx, ∫2x^2 dx, ∫x dx, dan ∫1 dx

∫(x^3 + 2x^2 + x + 1) dx = ∫x^3 dx + ∫2x^2 dx + ∫x dx + ∫1 dx

= (x^4 / 4) + (2x^3 / 3) + (x^2 / 2) + x + C

= (1/4)x^4 + (2/3)x^3 + (1/2)x^2 + x + C, dengan C jadi konstanta integrasi.

5. ∫(3x^2 + 4x + 2) / x dx

Jawaban:

jadiin dua bagian terpisah, yaitu ∫3x dx dan ∫(4/x) dx

∫(3x^2 + 4x + 2) / x dx = ∫3x dx + ∫(4/x) dx

= (3/2)x^2 + 4ln|x| + C, dengan C merupakan konstanta integrasi.


16. soal dan pembahasan fungsi trigonometri


Fungsinya untuk menghubungkan antara sudut2 dalam suatu segitiga

17. 5 soal dan pembahasan identitas trigonometri




1. Tentukan nilai dari: 2 cos 75° cos 15°

Jawaban:

2 cos 75° cos 15° = cos (75 +15)° + cos (75 – 15)°
= cos 90° + cos 60°
= 0 + ½
= ½



2. Buktikan bahwa sin4 α – sin2 α = cos4 α – cos2 α
Jawaban:

sin4 α – sin2 α = (sin2 α)2 – sin2 α
= (1 cos2 α) 2 – (1 cos2 α)
= 1 – 2 cos2 α + cos4 α – 1 + cos2 α
= cos4 α – cos2 α



3. Diketahui p dan q adalah sudut lancip dan p – q = 30°. Jika cos p sin q = 1/6 , maka nilai
dari sin p cos q =
Jawaban:
p – q = 30°
sin (p – q)= sin 30°
sin p cos q – cos p sin q = ½
sin p cos q – 1/6 = ½
sin p cos q = ½ + 1/6 = 4/6
jadi nilai sin p cos q = 4/6



4. Pada segitiga ABC lancip, diketahui cos A = 4/5 dan sin B =12/ 13 , maka sin C =
Jawaban:
Karena segitiga ABC lancip , maka sudut A,B dan C juga lancip, sehingga :
cos A = 4/5, maka sin A = 3/5, (ingat cosami, sindemi dan tandesa)
sin B = 12/13, maka cos B = 5/13
A + B + C = 180°, (jml sudut -sudut dalam satu segitiga = 180)
A + B = 180 – C
sin (A + B) = sin (180 – C)
sin A . cos B + cos A.sin B = sin C, (ingat sudut yang saling berelasi : sin(180-x) = sin x)
sin C = sin A.cos B + cos A.sin B
sin C = 3/5.5/13 + 4/5.12/13
sin C = 15/65 + 48/65 = 63/65
5. Berapa nilai sin 120o?
Jawaban:
120 = 90 + 30, jadi sin 120o dapat dihitung dengan
Sin 120o = Sin (90o + 30o) = Cos 30o (nilainya positif karena soalnya adalah sin 120o, di kuadran 2, maka hasilnya positif)
Cos 30o = ½ √3

Atau dengan cara lain:

Sama seperti 180o-80o.
Sin 120o = Sin (180o – 60o) = sin 60o = ½ √3

Minta yg Susah monggo pm saya

18. contoh soal fungsi grafik trigonometri di bidang elektronika dan pembahasannya


bisa pakai gelombang berjalan, 
y=asin2pi(wt+lamda).
makenya misak di bidang laser.

19. Ada yang punya kumpulan soal dan pembahasan turunan fungsi trigonometri? 10 soal + pembahasannya


Jawaban:

1.    Ordinat dari titik A (9, 21) adalah...

a.    -9

b.    9

c.    -21

d.    21

Pembahasan:

Secara umum, penulisan suatu titik = (absis, ordinat). Pada soal di atas titik A (9, 21) menunjukkan bahwa:

Absis = 9

Ordinat = 21

Jawaban yang tepat adalah D.

2.    Diketahui titik P (3, 2) dan Q (15, 13). Koordinat relatif titik Q terhadap P adalah...

a.    (12, 11)

b.    (12, 9)

c.    (18, 11)

d.    (18, 13)

Pembahasan:

Koordinat relatif titik Q ke titik P dapat dicari dengan mengurangkan:

a.    Absis Q dikurangi absis P

b.    Ordinat Q dikurangi ordinat P

Jadi, koordinat relatif Q terhadap P adalah:

(15 – 3 , 13 – 2) = (12, 11)

Jawaban yang tepat A.

3.    Titik A (3, 2), B (0, 2), dan C (-5, 2) adalah titik-titik yang dilalui oleh garis p. Jika garis q adalah garis yang sejajar dengan garis p, garis q akan...

a.    Sejajar dengan sumbu x

b.    Sejajar dengan sumbu y

c.    Tegak lurus dengan sumbu x

d.    Tegak lurus dengan sumbu y

Pembahasan: untuk mempermudah, mari kita gambar pada bidang Cartesius:

 Pada gambar di atas terlihat bahwa garis p sejajar dengan sumbu X. Karena garis q sejajar dengan garis p, maka garis q juga sejajar dengan sumbu X.

Jawaban yang tepat A.

4.    Diketahui garis p dan q adalah dua garis lurus yang tidak memiliki titik potong meskipun diperpanjang hingga tak terhingga. Kedudukan garis p dan q adalah...

a.    Berimpit

b.    Sejajar

c.    Bersilangan

d.    Berpotongan

Pembahasan:

Dua buah garis yang tidak memiliki titik potong meskipun diperpanjang adalah dua garis yang saling sejajar. Jawaban yang tepat adalah B.

5.    Berdasarkan gambar di bawah ini, dapat dinyatakan bahwa:

(i)    AB sejajar dengan EF.

(ii)    BC bersilangan dengan GC

(iii)    AD berimpit dengan BC.

(iv)    EF berpotongan dengan GF.

Dari pernyataan di atas, yang benar adalah...

a.    (i) dan (ii)

b.    (ii) dan (iii)

c.    (iii) dan (iv)

d.    (i) dan (iv)

Pembahasan: perhatikan gambar balok di atas:

a.    AB sejajar EF , maka (i) benar

b.    BC berpotongan dengan GC di titik C, maka (ii) salah

c.    AD sejajar dengan BC, maka (iii) salah

d.    EF berpotongan dengan GF di titik F, maka (iv) benar

Jawaban yang benar adalah D.

6.    Besar <P = 113 derajat maka sudut P merupakan sudut...

a.    Refleks

b.    Tumpul

c.    Siku-siku

d.    Lancip

Pembahasan: 

Sudut P besarnya 113 derajat, ini berarti sudut P adalah sudut tumpul, karena sudut tumpul adalah sudut yang berada dalam kisaran 90 derajat sampai 180 derajat. Jawaban yang tepat B.


20. contoh soal terkait penerapan perbandingan nilai sisi segitiga dan terkait trigonometri di bidang teknik bangunan dan bidang matematika ? beserta pembahasannya....


seorang anak berdiri di depan bendera dg jarak 6 m, sudut yg dibentuk anak tersebut terhadap



error

21. buat 10 contoh soal matematika trigonometri sama jawabannya


hitunglah besarnya sudut ketiga dalam segitiga, yang mana dua sudutnya ditentukan sebagai berikut
a. 50· dan 70              e.120· dan 30·
b. 70· dan 60·
c. 72· dan 82·
d. 60· dan 60·

22. contoh soal dan pembahasan tentang penerapan trigonometri dalam kehidupan sehari hari


dalam kehidupan sehari-hari pernahkah anda berfikir dan menanyakan berapakah tinggi gedung yang anda lihat?? bagaimana cara mengukur tinggi gedung tersebut tanpa bantuan dari orang lain dan tanpa masuk kedalam gedung tersebut? sebenarnya hal ini tidak lah sulit untuk dilakukan. pada gambar diatas saya ilustrasikan ada beberapa siswa yang sedang berdiri di depan sebuah gedung dengan jarak tertentu, mereka sedang mengira berapakah tinggi gedung tesebut? dengan bekal pengetahuan dan dengan berbekal meteran dan alat pengukur sudut, mereka mulai melakukan perhitungan. mula-mula salah satu dari mereka berdiri pda jarak tertentu kemudian dengan menggunakan pengukur sudut, ia melihat atap gedung sehiingga terbentuuklah sudut tertenttu

23. Tuliskan contoh soal identitas trigonometri, jawabannya dan pembahasannya.​


Diketahui :

Pembuktian suatu identitas trigonometri

Ditanya :

Contoh soal pembuktian identitas trigonometri ... ?

Jawab :

1. Soal : Buktikan (sin 2x)/sin x = (1 + cos 2x)/cos x

Penyelesaian :

Pembuktian dari kiri dan kanan langsung.

[tex]\frac{sin2x}{sinx} = \frac{1+cos2x}{cosx}\\\frac{2.sinx.cosx}{sinx} = \frac{(sin^2x+cos^2x)+(cos^2x - sin^2x)}{cosx}\\2.cosx = \frac{2.cos^2x}{cosx}\\2.cosx = 2cosx[/tex]

Terbukti bahwa (sin 2x)/sin x = (1 + cos 2x)/cos x adalah benar.

2. Soal : Buktikan (1 - cos 2x)/(1 - cos² x) = 2

Penyelesaian :

Pembuktian dari kiri.

[tex]\frac{1-cos2x}{1-cos^2x} = 2\\\frac{(sin^2x +cos^2x)-(cos^2x - sin^2x)}{sin^2x} = 2\\\frac{2sin^2x}{sin^2x} = 2\\2 = 2[/tex]

Terbukti bahwa (1 - cos 2x)/(1 - cos² x) = 2 adalah benar.

3. Soal : Buktikan cosec 2x = (1 + cot² x)/(2.cot x)

Penyelesaian :

Pembuktian dari kanan.

[tex]cosec2x = \frac{1+cot^2x}{2.cotx}\\cosec2x = \frac{\frac{sin^2x}{sin^2x}+\frac{cos^2x}{sin^2x}}{2.\frac{cosx}{sinx}}\\cosec2x = \frac{\frac{sin^2x+cos^2x}{sin^2x}}{\frac{2.cosx}{sinx}}\\cosec2x = \frac{\frac{1}{sin^2x}}{\frac{2.cosx}{sinx}}\\cosec2x = \frac{1}{sin^2x} . \frac{sinx}{2.cosx}\\cosec2x = \frac{1}{2.sinx.cosx}\\cosec2x = \frac{1}{sin2x}\\cosec2x = cosec2x[/tex]

Terbukti bahwa cosec 2x = (1 + cot² x)/(2.cot x) adalah benar.


24. contoh soal dan pembahasan integral trigonometri


Kepada Admin terhormat.. Itu yang anda hapus itu file saya.. jadi jangan sembarangan hapus ya..  

http://2.bp.blogspot.com/-1gCHzq1wq9A/U-IRpxbojdI/AAAAAAAACaY/EBpPc5wi4qA/s1600/DSCN6473.JPG 

kalau saudara penghapus tidak percaya, silahkan buka http://pkkdpk.blogspot.com/2014/08/blog-post_28.html





saya lakukan ini karena file fotonya tidak bisa masuk ke brainly... jadi tolong ga usah main2 jadi admin deh

25. ***contoh soal trigonometri kelas 10 dan pembahasannya dong


dalam bentuk lain 3sin^2 x - 2cos^2 x =.....
jawab :
sin^2x + cos^2x=1 =>cos^2x= 1-sin^2x
sehingga:
3sin^2x-2cos^2x
= 3sin^2x-2(1-sin^2x)
=3sin^2x-2+2sin^2x
=5sin^2x-2

26. berikan 5 contoh soal dan pembahasan trigonometri dari persamaan sederhana hingga kuadrat​


Persamaan Trigonometri

Persamaan trigonometri adalah persamaan yang mengandung perbandingan antara sudut trigonometri dalam bentuk x. Penyelesaian persamaan ini dengan cara mencari seluruh nilai sudut-sudut x, sehingga persamaan tersebut bernilai benar untuk daerah asal tertentu.

Penyelesaian persamaan trigonometri dalam bentuk derajat yang berada pada rentang 0^{\circ} sampai dengan 360^{\circ} atau dalam bentuk radian yang berada pada rentang 0 sampai dengan 2π.


27. minta contoh soal sama pembahasan tentang persamaan trigonometri dong????????


Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari cos x = 1/2 

Pembahasan
1/2 adalah nilai cosinus dari 60°. 

Sehingga 

cos x = cos 60° 

Cos x° = Cos a°

MAKA

x = a + k . 360
x = -a + k . 360

(i) x = 60° + k ⋅ 360°
k = 0 → x = 60 + 0 = 60 °
k = 1 → x = 60 + 360 = 420°

(ii) x = −60° + k⋅360
x = −60 + k⋅360
k = 0 → x = −60 + 0 = −60° 
k = 1 → x = −60 + 360° = 300° 

Himpunan penyelesaian yang diambil adalah:
HP = {60°, 300°}1. Jika Sin xo = Sin α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (180– α) + k. 360 k ∈ Bilangan Bulat
2. Jika Cos xo = Cos α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (– α) + k. 360 k ∈ Bilangan Bulat
3. Jika tan xo = tan α o (x ∈ R) Maka : x1.2 = α + k. 180 k ∈ Bilangan Bulat

Contoh ❶ 

Himpunan penyelesaian dari pesamaan:

2sin x⁰ - √3 = 0, 0⁰ ≤ x ≤ 2π⁰ adalah .....

A. {π/3 , 2π/3}

B. {π/3 , π/6}

C. {π/3 , π/2}

D. {π/3 , 5π/6}

E. {2π/3 , 5π/6}

Pembahasan:

2sin x⁰ - √3 = 0

2sin x⁰ = √3

  sin x⁰ = (1/2)√3

  sin x⁰ = sin π/3⁰

       x₁ = π/3 + k . 360 atau x₂ = (π - π/3) + k . 360

Untuk k = 0 maka:

       x₁ = π/3

       x₂ = 2π/3

Jadi, himpunan penyelesaiannya adalah {π/3 , 2π/3} -----> Jawaban: A


28. minta contoh soal turunan fungsi trigonometri serta pembahasan yaa


Limit fungsi trigonometri adalah nilai pendekatan suatu sudut pada fungsi trigonometri. Atau lim x→ ∞ f(x), dan f(x) merupakan fungsi trigonometri maka nilai dari limit tersebut disebut limit fungsi trigonometri             . Perhitungan limit fungsi trigonometri sebenarnya tidak jauh berbeda dari perhitungan limit fungsi aljabar, tetapi ada rumus tambahan yaitu rumus-rumus identitas trigonometri yang sangat  berguna untuk menyelesaikan persoalan menentukan nilai limit fungsi trigonometri. Sekarang kita pelajari dahulu rumus-rumus pendukung tersebut:
contoh soal :

semoga membantu ^_^



29. pembahasan soal turunan fungsi trigonometri


Kategori Soal:Membuat Soal Trigonometri
Kelas:IX SMP

Pembahasan:

Nazril sejauh 10 meter dari tembok bangunan memandang puncak bangunan itu dengan sudut 30°. Berapa tinggibangunan itu ............?
jawab :
tan 30° = t
10
1 = t
√3 10
t = 10 = 10 √3
√3 3
Jadi tinggi bangunan itu adalah 10 √3
3

30. contoh soal trigonometri kelas 10 dan pembahasannya dong**


Nyatakan sudut-sudut berikut dalam satuan derajad:
a) 1/2 π rad
b) 3/4 π rad
c) 5/6 π rad


Pembahasan
Konversi:
1 π radian = 180°

Jadi:
a) 1/2 π rad


b) 3/4 π rad


c) 5/6 π rad





31. minta contoh soal sama pembahasan tentang persamaan trigonometri dong????????


1. Jika Sin xo = Sin α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (180– α) + k. 360 k ∈ Bilangan Bulat
2. Jika Cos xo = Cos α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (– α) + k. 360 k ∈ Bilangan Bulat
3. Jika tan xo = tan α o (x ∈ R) Maka : x1.2 = α + k. 180 k ∈ Bilangan Bulat


32. contoh soal trigonometri dan pembahasannya


                  cos 25 + cos 115
 soalnya =  -----------------------
                   cos 25 - cos 115
                   
maaf kalau salah

33. Buatlah 2 contoh soal penerapan trigonometri beserta pembahasannya



Pada segitiga ABC diketahui panjang sisi AB = 2 cm, AC = 3 cm dan BC = 2 cm. Nilai Sin A = ...



pembahasan

AB = c = 2 dan AC = b = 3 serta BC = a = 2, maka dengan menggunakan aturan cosinus:

a2 = b2 + c2 – 2 . b . c Cos A

22 = 32 + 22 – 2 . 3 . 2 Cos A

4 = 9 + 4 - 12 Cos A
12 Cos A = 9
Cos A = 9 / 12 = 3 / 4
Sehingga sin A = (√(42 - 32) / 4 = √7/4



Himpunan penyelesaian dari persamaan cos 2x + 3 sin x + 1 = 0, untuk 0 < x < 2π adalah...

pembahasan
cos 2x + 3 sin x + 1 = 0
(1 - 2 sin x2) + 3 sin x + 1 = 0
- 2 sin x2 + 3 sin x +2 = 0
2 sin x2 - 3 sin x - 2 = 0
(2 sin x + 1) (sin x - 2) = 0
Maka:
2 sin x + 1 = 0 maka sin x = - 1/2
Diperoleh x = 7/6 π dan x = 11/12 π
Dan
sin x - 2 = 0 maka sin x = 2 (tidak mungkin dicari x)
HP = (7/6 π , 11/12 π)

34. minta rumus dasar trigonometri dong.. sekalian contoh soal dan pembahasan


pada segitiga siku2
oada sudut selain 90°
sin = sisi depan / sisi miring
cos = sisi samping / sisi miring
tan = sisi depan / sisi samping

cosec = 1/sin
sec = 1/cos
cotan = 1/tan

35. Contoh soal Turunan trigonometri atyran rantai dan pembahasannya


Lihat lampiran untuk contoh.


36. soal matematika trigonometri​


Cara tertera pada gambar

Hasilnya adalah 15/8 atau -15/8


37. QuizMatematikaMateri "Trigonometri"Contoh Soal Dan Soal(Bagian paling Bawah) Ada Pada Gambar​


nomor 1

sin 120° = sin (180° - 60°)

             = sin 60°

sin 120° =  1/2√3

cos 120° = cos (180° - 60°)

              = -cos 60°

cos 120° =  -1/2

tan 120° = tan (180° - 60°)

              = -tan 60°

tan 120° = √3

nomor 2

sin 210° = sin (180° + 30°)

             = -sin 30°

sin 210° =  -1/2

cos 210° = cos (180° + 30°)

              = -cos 30°

sin 210° =  -1/2√3

tan 210° = tan (180° + 30°)

              = tan 30°

tan 210° = √3

nomor 3

sin 315° = sin (360° - 45°)

             = -sin 45°

sin 315° =  -1/2√2

cos 315° = cos (360° - 45°)

              = cos 45°

sin 315° =  1/2√2

tan 315° = tan (360° - 45°)

             = -tan 45°

tan 315° =  -1


38. **contoh soal trigonometri kelas 10 dan pembahasannya dong


IDENTITAS TRIGONOMETRI :
sederhanakan
1. Tan A x cos A
2. Tan A x Cosec A
jawab :
1.  [tex] \frac{sin A}{cos A} [/tex] X cos A
dapat disederhanakan dengan cara mencoret/eliminasi cos A. Maka hasilnya sin A
2.  [tex] \frac{sin A}{cos A} [/tex] x [tex] \frac{1}{sin A} [/tex] dapat disederhanakan dengan mencoret/eliminasi sin A, lalu mendapat hasil [tex] \frac{1}{cos A} [/tex] dan dapat disederhanakan lagi menjadi Sec A

39. contoh soal matematika tentang trigonometri​


Contoh 1

Apabila tan 9°= p. Tentukanlah nilai dari tan 54°

Jawaban:

tan 54° = tan (45° + 9°)

= tan 45° + tan 9°/1 – tan 45° x tan 9°

= 1 + p/1 – p

Sehingga, hasil nilai dari tan 54° adalah = 1 + p/1 – p

Contoh 2

Hitunglah nilai dari sin 105° + sin 15°

Jawaban:

sin 105° + sin 15° = 2 sin ½ (105+15)°cos ½ (105-15)°

= 2 sin ½ (102)° cos ½ (90)°

= sin 60° cos 45° = 1/2 √ 3 . 1/2 √ 2 = 1/4 √ 6

Maka nilai dari sin 105° + sin 15° adalah 1/4 √ 6

Contoh juga ada di foto ya,jangan lupa follow pliss yaaa,


40. soal dan pembahasan trigonometri di bidang fisika


Limit fungsi trigonometri adalah nilai pendekatan suatu sudut pada fungsi trigonometri. Atau lim x→ ∞ f(x), dan f(x) merupakan fungsi trigonometri maka nilai dari limit tersebut disebut limit fungsi trigonometri             . Perhitungan limit fungsi trigonometri sebenarnya tidak jauh berbeda dari perhitungan limit fungsi aljabar, tetapi ada rumus tambahan yaitu rumus-rumus identitas trigonometri yang sangat  berguna untuk menyelesaikan persoalan menentukan nilai limit fungsi trigonometri. Sekarang kita pelajari dahulu rumus-rumus pendukung tersebut:
contoh soal :

semoga membantu ^_^



Video Terkait

Kategori matematika