Uji Kompetensi 6 Matematika Kelas 7 Semester 2 Soal Uraian

Uji Kompetensi 6 Matematika Kelas 7 Semester 2 Soal Uraian

uji kompetensi 6 semester 2 soal uraian​

Daftar Isi

1. uji kompetensi 6 semester 2 soal uraian​


Jawab:....

.

Penjelasan dengan langkah-langkah:


2. Kunci jawaban matematika hal. 94 kelas 7 uji kompetensi 6 semester 2


Kunci jawaban matematika hal. 94 kelas 7 uji kompetensi 6 semester 2 (Pilihan Ganda)

Saya akan menjawab soal ini dari nomor 1 - 8

Rumus :

Untung / rugi = Pendapatan - Modal

Untung / rugi = [tex]\frac{persentase\:untung\:atau\:rugi}{100}[/tex] x Modal

Kondisi untung apabila pendapatan lebih besar dari modal

Kondisi rugi apabila pendapatan lebih kecil dari modal (negatif)

Pembahasan :1. Tentukan kondisi berikut yang manakah yang menunjukkan kondisi rugi?Pemasukkan     Pengeluaran

       (Rp)                     (Rp)

a.  700.000           900.000

b. 1.100.000          1.100.000

c. 2.100.000         2.000.000

d. 1.650.000          1.550.000

Untuk menjawab soal ini, maka kita harus tahu dahulu kalau keadaan yang menunjukkan kondisi rugi adalah keadaan dimana pemasukkan lebih kecil daripada pengeluaran

a. Pemasukkan = 700.000          

Pengeluaran = 900.000

Kondisi ini adalah kondisi rugi, karena pengeluaran lebih besar daripada pemasukkan

Rugi = 900.000 - 700.000 = 200.000

b. Pemasukkan = 1.100.000          

Pengeluaran = 1.100.000

Apabila kondisi pemasukkan = pengeluaran maka kondisi ini dinamakan kondisi impas

c. Pemasukkan = 2.100.000        

Pengeluaran = 2.000.000

Pada kondisi ini pemasukkan lebih besar daripada pengeluaran, maka disebut kondisi untung

Untung = 2.100.000 - 2.000.000 = 100.000

d. Pemasukkan = 1.650.000          

Pengeluaran = 1.550.000

Kondisi ini dinamakan kondisi untung, karena pemasukkan lebih besar daripada pengeluaran

Untung = 1.650.000 - 1.550.000 = 100.000

2. Seorang pedagang mengeluarkan Rp 1.500.000 untuk menjalankan usahanya. Jika pada hari itu dia mendapatkan keuntungan sebesar 10%. Maka besarnya pendapatan yang didapatkan pada hari itu adalah...

a. Rp 1.650.000          c. Rp 1.400.000

b. Rp 1.600.000          d. Rp 1.350.000

Diketahui :

Modal Rp 1.500.000

Untung = 10%

Ditanya :

Pendapatan ?

Dijawab :

Untung = [tex]\frac{10}{100}[/tex] x Rp 1.500.000 = Rp 150.000

Pendapatan = Rp 1.500.000 + Rp 150.000 = Rp 1.650.000 (A)

3. Pak Dedi membeli suatu sepeda motor bekas dengan harga Rp 5.000.000. Dalam waktu 1 minggu motor tersebut dijual kembali dengan harga 110% dari harga belinya. Tentukan keuntungan Pak Dedi?

a. Rp 500.000             c. Rp 4.500.000

b. Rp 1.000.000           d. Rp 5.500.000

Diketahui :

Modal Rp 5.000.000

Dijual kembali 110% dari harga beli

Ditanya :

Keuntungan Pak Dedi ?

Dijawab :

Harga jual = [tex]\frac{110}{100}[/tex] x Rp 5.000.000 = Rp 5.500.000

Karena harga jual lebih tinggi dari harga beli, maka kondisinya adalah untung

Keuntungan Pak Dedi = Rp 5.500.000 - Rp 5.000.000 = Rp 500.000 (A)

4. Pak Candra membeli suatu sepeda bekas dengan harga Rp 500.000. Dalam waktu 1 minggu sepeda tersebut dijual kembali dengan harga 110% dari harga beli. Tentukan keuntungan Pak Candra?

a. Rp 550.000              c. Rp 50.000

b. Rp 100.000               d. Rp 25.000

Diketahui :

Modal Rp 500.000

Harga jual 110% dari harga beli

Ditanya :

Keuntungan Pak Candra ?

Dijawab :

Harga jual = [tex]\frac{110}{100}[/tex] x Rp 500.000 = Rp 550.000

Karena harga jual lebih tinggi dari harga beli, maka kondisinya adalah untung

Keuntungan Pak Candra = Rp 550.000 - Rp 500.000 = Rp 50.000 (C)

5. Pak Edi membeli mobil dengan harga Rp 160.000.000. Setelah 6 bulan dipakai Pak Edi menjual mobil tersebut dengan harga Rp 140.000.000. Tentukan taksiran terdekat persentase kerugian yang ditanggung Pak Edi?

a. 20%          c. 15%

b. 18%           d. 12%

Diketahui :

Harga beli = Rp 160.000.000

Harga jual = Rp 140.000.000

Ditanya :

Taksiran persentase kerugian Pak Edi ?

Dijawab :

Karena harga beli lebih tinggi daripada harga jual, maka kondisi ini adalah kondisi rugi. Pertama-tama kita cari dahulu kerugian yang dialami

Rugi = Rp 160.000.000 - Rp 140.000.000 = Rp 20.000.000

Persentase kerugian = [tex]\frac{20.000.000}{160.000.000}[/tex] x 100% = 12,5%

Taksiran terdekat adalah 12% (D)

6. Pak Fandi membeli sepetak tanah dengan harga Rp 40.000.000 1 tahun kemudian, Pak Dedi menjual tanah tersebut dengan keuntungan 16%. Tentukan taksiran terdekat harga jual tanah milik Pak Fandi?

a. Rp 6.400.000 c. Rp 46.400.000

b. Rp 33.600.000 d. Rp 56.000.000

Diketahui :

Harga beli = Rp 40.000.000

untung = 16%

Ditanya :

Taksiran terdekat harga jual ?

Dijawab :

untung = [tex]\frac{16}{100}[/tex] x Rp 40.000.000 = Rp 6.400.000

Harga jual tanah = Rp 40.000.000 + Rp 6.400.000 = Rp 46.400.000 (C)

Pelajari lebih lanjut :

Soal-soal tentang Aritmatika sosial :

1. brainly.co.id/tugas/21432898

2. brainly.co.id/tugas/21335926

======================

Detail Jawaban :

Kelas : VII

Mapel : Matematika

Bab : Bab 7 - Aritmatika sosial

Kode : 7.2.7

Kata Kunci : untung, rugi, uji kompetensi 6, kelas 7 semester 2


3. jawaban matematika kelas 7 semester 2 uji kompetensi 6 halaman 94​


Jawaban matematika kelas 7 semester 2 uji kompetensi 6 halaman 94​

Saya akan menjawab soal ini dari nomor 1 - 8

Rumus :

Untung / rugi = Pendapatan - Modal

Untung / rugi = [tex]\frac{persentase\:untung\:atau\:rugi}{100}[/tex] x Modal

Kondisi untung apabila pendapatan lebih besar dari modal

Kondisi rugi apabila pendapatan lebih kecil dari modal (negatif)

Pembahasan :

1. Tentukan kondisi berikut yang manakah yang menunjukkan kondisi rugi

Pemasukkan     Pengeluaran

       (Rp)                     (Rp)

a.  700.000           900.000

b. 1.100.000          1.100.000

c. 2.100.000         2.000.000

d. 1.650.000          1.550.000

Untuk menjawab soal ini, maka kita harus tahu dahulu kalau keadaan yang menunjukkan kondisi rugi adalah keadaan dimana pemasukkan lebih kecil daripada pengeluaran

a. Pemasukkan = 700.000          

Pengeluaran = 900.000

Kondisi ini adalah kondisi rugi, karena pengeluaran lebih besar daripada pemasukkan

Rugi = 900.000 - 700.000 = 200.000

b. Pemasukkan = 1.100.000          

Pengeluaran = 1.100.000

Apabila kondisi pemasukkan = pengeluaran maka kondisi ini dinamakan kondisi impas

c. Pemasukkan = 2.100.000        

Pengeluaran = 2.000.000

Pada kondisi ini pemasukkan lebih besar daripada pengeluaran, maka disebut kondisi untung

Untung = 2.100.000 - 2.000.000 = 100.000

d. Pemasukkan = 1.650.000          

Pengeluaran = 1.550.000

Kondisi ini dinamakan kondisi untung, karena pemasukkan lebih besar daripada pengeluaran

Untung = 1.650.000 - 1.550.000 = 100.000

2. Seorang pedagang mengeluarkan Rp 1.500.000 untuk menjalankan usahanya. Jika pada hari itu dia mendapatkan keuntungan sebesar 10%. Maka besarnya pendapatan yang didapatkan pada hari itu adalah...

a. Rp 1.650.000          c. Rp 1.400.000

b. Rp 1.600.000          d. Rp 1.350.000

Diketahui :

Modal Rp 1.500.000

Untung = 10%

Ditanya :

Pendapatan ?

Dijawab :

Untung = [tex]\frac{10}{100}[/tex] x Rp 1.500.000 = Rp 150.000

Pendapatan = Rp 1.500.000 + Rp 150.000 = Rp 1.650.000 (A)

3. Pak Dedi membeli suatu sepeda motor bekas dengan harga Rp 5.000.000. Dalam waktu 1 minggu motor tersebut dijual kembali dengan harga 110% dari harga belinya. Tentukan keuntungan Pak Dedi?

a. Rp 500.000             c. Rp 4.500.000

b. Rp 1.000.000           d. Rp 5.500.000

Diketahui :

Modal Rp 5.000.000

Dijual kembali 110% dari harga beli

Ditanya :

Keuntungan Pak Dedi ?

Dijawab :

Harga jual = [tex]\frac{110}{100}[/tex] x Rp 5.000.000 = Rp 5.500.000

Karena harga jual lebih tinggi dari harga beli, maka kondisinya adalah untung

Keuntungan Pak Dedi = Rp 5.500.000 - Rp 5.000.000 = Rp 500.000 (A)

4. Pak Candra membeli suatu sepeda bekas dengan harga Rp 500.000. Dalam waktu 1 minggu sepeda tersebut dijual kembali dengan harga 110% dari harga beli. Tentukan keuntungan Pak Candra?

a. Rp 550.000              c. Rp 50.000

b. Rp 100.000               d. Rp 25.000

Diketahui :

Modal Rp 500.000

Harga jual 110% dari harga beli

Ditanya :

Keuntungan Pak Candra ?

Dijawab :

Harga jual = [tex]\frac{110}{100}[/tex] x Rp 500.000 = Rp 550.000

Karena harga jual lebih tinggi dari harga beli, maka kondisinya adalah untung

Keuntungan Pak Candra = Rp 550.000 - Rp 500.000 = Rp 50.000 (C)

5. Pak Edi membeli mobil dengan harga Rp 160.000.000. Setelah 6 bulan dipakai Pak Edi menjual mobil tersebut dengan harga Rp 140.000.000. Tentukan taksiran terdekat persentase kerugian yang ditanggung Pak Edi?

a. 20%          c. 15%

b. 18%           d. 12%

Diketahui :

Harga beli = Rp 160.000.000

Harga jual = Rp 140.000.000

Ditanya :

Taksiran persentase kerugian Pak Edi ?

Dijawab :

Karena harga beli lebih tinggi daripada harga jual, maka kondisi ini adalah kondisi rugi. Pertama-tama kita cari dahulu kerugian yang dialami

Rugi = Rp 160.000.000 - Rp 140.000.000 = Rp 20.000.000

Persentase kerugian = [tex]\frac{20.000.000}{160.000.000}[/tex] x 100% = 12,5%

Taksiran terdekat adalah 12% (D)

6. Pak Fandi membeli sepetak tanah dengan harga Rp 40.000.000 1 tahun kemudian, Pak Dedi menjual tanah tersebut dengan keuntungan 16%. Tentukan taksiran terdekat harga jual tanah milik Pak Fandi?

a. Rp 6.400.000      c. Rp 46.400.000

b. Rp 33.600.000    d. Rp 56.000.000

Diketahui :

Harga beli = Rp 40.000.000

untung = 16%

Ditanya :

Taksiran terdekat harga jual ?

Dijawab :

untung = [tex]\frac{16}{100}[/tex] x Rp 40.000.000 = Rp 6.400.000

Harga jual tanah = Rp 40.000.000 + Rp 6.400.000 = Rp 46.400.000 (C)

Pelajari lebih lanjut :

Soal-soal tentang Aritmatika sosial :

1. brainly.co.id/tugas/21432898

2. brainly.co.id/tugas/21335926

======================

Detail Jawaban :

Kelas : VII

Mapel : Matematika

Bab : Bab 7 - Aritmatika sosial

Kode : 7.2.7

Kata Kunci : untung, rugi, uji kompetensi 6, kelas 7 semester 2


4. jawaban dan cara uji kompetensi 7 kelas 7 semester 2 ​


5. 10.15 - 08.30 = 105 menit

90 derajat = 15 menit

105 : 15 = 7

7) 10.15

08.30

------------------- -

= 01.45

Banyak sudut siku - siku

= 01.45 ÷ 15

= 4 + 3

= 7

Sekian dan terima kasih


5. matematika kelas 8 uji kompetensi semester 1


Mencari Persamaan Garis Lurus

10). Gradien garis yang melalui titik (1,2) dan titik (3,4) adalah

untuk mencari gradien dua titik, kita menggunakan persamaan :

m = (y₂-y₁)/(x₂-x₁)

dimana : x₁ = 1, x₂ = 3

              y₁ = 2, y₂ = 4

m = (y₂-y₁)/(x₂-x₁)

   = (4-2)/(3-1)

   = 2/2 = 1

Jadi gradien garis yang melalui kedua titik tersebut adalah 1

Jawaban : A

11). Persamaan suatu garis yang melalui titik (1,2) dan titik (3,4) adalah :

maka x₁ = 1, x₂ = 3

         y₁= 2, y₂ = 4

untuk mencari persamaan garis yang melalui dua titik dapat digunakan persamaan berikut :

(y-y₁)/(y₂-y₁) = (x-x₁)/(x₂-x₁)

(y-2)/(4-2) = (x-1)/(3-1)

(y-2)/2 = (x-1)/2

2y - 4 = 2x -2

2y = 2x -2 +4

2y = 2x + 2 atau y = x +1

Jawaban : D

12). Persamaan garis yang melalui titik (3,6)  dan sejajar dengan garis 2x + 2y = 3 adalah :

Langkah pertama yang dilakukan adalah mencari gradien garis yang diketahui dengan mengubah persamaan menjadi y = mx+c

2x + 2y = 3

2y = 3 - 2x

y = 3/2 - x

jadi gradien garis yang diketahui adalah m = -1

Dua garis yang sejajar memiliki gradien yang sama, sehingga kita bisa mencari persamaan garis yang melalui titik (3,6) dapat dicari dengan persamaan :

y-y₁ = m(x-x₁)

y-6 = -1 (x-3)

y = -x+3+6

y = -x + 9

Jawaban : A

13). Persamaan garis yang melalui titik (-3,6) dan sejajar dengan garis 4y - 3x = 5 adalah

Mari kita ubah persamaan garis 4y-3x = 5 dalam bentuk y = mx + c untuk mencari gradien dari garis tersebut

4y - 3x = 5

4y = 5+3x

 y = 5/4 +3/4x

jadi gradien garis tersebut adalah m = 3/4

kedua garis yang sejajar mempunyai gradien yang sama, jadi persamaan garis yang melalui titik (-3,6) dapat dicari dengan persamaan berikut :

y-y₁ = m(x-x₁)

y-6 = 3/4(x+3)

y = 3/4x +9/4+6

4y = 3x +9 + 24

4y = 3x + 33

Jawaban : A atau D

14. Persamaan garis yang melalui titik (4,-3) dan tegak lurus dengan garis 4y -6x +10 = 0

Langkah pertama yaitu mengubah persamaan garis yang diketahui menjadi bentuk y = mx + c, sehingga diketahui gradien garis tersebut.

4y-6x + 10 = 0

4y = 6x -10

 y = 6/4x - 10/4

Jadi gradien garis tersebut adalah 6/4 atau 3/2.

Untuk mencari persamaan garis yang melalui titik (4,-3) dapat dicari dengan persamaan :

y-y₁ = (-1/m) (x-x₁)

y+3 = (-1/3/2)(x-4)

y+3 = -2/3(x-4) kalikan bagian kiri dan kanan dengan 3

3(y+3) = -2(x-4)

3y + 9 = -2x + 8

3y = -2x + 8 -9

3y = -2x -1

Jawaban : Tidak ada pilihan yang tepat, kemungkinan ada kesalahan pada soal.

Pelajari Lebih Lanjut

Untuk belajar lebih lanjut mengenai sistm persamaan, silakan kunjungi tautan berikut ini :

https://brainly.co.id/tugas/4342296

https://brainly.co.id/tugas/12610321

https://brainly.co.id/tugas/4641386

----------------------------------------------------

Detil tambahan

Kelas        : VIII

Pelajaran   : Matematika

Kategori     : Persamaan Garis Lurus

Kode : 8.2.3

Kata Kunci : tegak lurus, sejajar, melalui titik


6. matematika kelas 8 semester 2 hal 302 uji kompetensi 10​


7. Peluang empirik kemunculan mata dadu "selain 2" dalam percobaan tersebut adalah [tex]\frac{31}{36}[/tex]. Maka jawaban yang benar adalah A.

8. Peluang empirik muncul mata dadu dua pada data tersebut adalah [tex]\frac{1}{6}[/tex]. Maka jawaban yang benar adalah A.

9. Jika dilakukan pelemparan sebanyak 18 kali lagi, taksiran terbaik muncul mata dadu 2 menjadi sebanyak 9 kali. Maka jawaban yang benar adalah B.

Simak pembahasan berikut.

Pembahasan

7. Diketahui pada pelemparan sebuah dadu:

frekuensi total = x + 5 + 7 + 6 + 7 + 5

frekuensi total = x + 30

Kemunculan mata dadu 1 = x

Peluang empirik muncul mata dadu "1" = [tex]\frac{1}{6}[/tex]

Ditanya: Peluang empirik kemunculan mata dadu "selain 2"

Jawab:

Misalkan A adalah kejadian kemunculan mata dadu "1", maka peluang empirik A dirumuskan sebagai berikut:

P(A) = [tex]\frac{n(A)}{N}[/tex]

dengan n(A) = banyak anggota A

N = total frekuensi

Karena peluang empirik mata dadu "1" diketahui, maka diperoleh persamaan berikut:

P(A) = [tex]\frac{n(A)}{N}[/tex]

[tex]\frac{1}{6}[/tex] = [tex]\frac{x}{30+x}[/tex]

1(30 + x) = 6x

30 + x = 6x

30 = 6x - x

30 = 5x

x =  [tex]\frac{30}{5}[/tex]

x = 6

Maka frekuensi kemunculan mata dadu "1" adalah 6.

Misal B adalah kejadian muncul mata dadu " selain 2", maka banyak anggota B adalah

n(B) = 6 + 7 + 6 + 7 + 5

n(B) = 31

N = 30 + x

N = 30 + 6

N = 36

Maka peluang empirik kejadian B adalah

P(B) = [tex]\frac{n(B)}{N}[/tex]

P(B) = [tex]\frac{31}{36}[/tex]

∴ Jadi peluang empirik muncul mata dadu " selain 2" adalah [tex]\frac{31}{36}[/tex]

8. Diketahui pada pelemparan sebuah dadu:

Frekuensi total = 5 + 6 + 8 + 7 + 6 + 4

Frekuensi total = 36

Frekuensi muncul mata dadu 2 = 6

Ditanya: peluang empirik muncul mata dadu 2

Jawab:

Misal A adalah kejadian muncul mata dadu 2 maka peluang empirik A adalah

P(A) = [tex]\frac{n(A)}{N}[/tex]

P(A) = [tex]\frac{6}{36}[/tex]

P(A) = [tex]\frac{1}{6}[/tex]

∴ Jadi peluang empirik muncul mata dadu 2 adalah [tex]\frac{1}{6}[/tex].

9. Diketahui pada sebuah pelemparan dadu

Frekuensi muncul mata dadu 2 = 6 kali

Ditanya: taksiran terbaik muncul mata dadu 2 jika dilakukan pelemparan 18 kali lagi

Jawab:

Karena dadu bermata 6, maka jika dilakukan pelemparan 18 kali lagi, frekuensi harapan yang muncul dirumuskan sebagai berikut:

F(A) = P(A) × N

dengan P(A) adalah peluang kejadian A dan N adalah frekuensi pelemparan.

Jika A  adalah kejadian muncul mata dadu 2, maka banyak anggota A pada pelemparan sebuah dadu adalah:

n(A) = 1

Dan karena pelemparan sebuah dadu bermata 6, maka banyak anggota ruang sampel adalah

n(S) = 6

Sehingga, peluang kejadian A adalah:

P(A) = [tex]\frac{n(A)}{n(S)}[/tex]

P(A) = [tex]\frac{1}{6}[/tex]

Frekunsi harapan muncul mata dadu 2 jika dilakukan pelemparan 18 kali adalah:

F(A) = P(A) × N

F(A) = [tex]\frac{1}{6}[/tex] × 18

F(A) = 3

Maka taksiran terbaik muncul mata dadu dua adalah:

muncul mata dadu 2 = frekuensi muncul mata dadu 2 + frekuensi harapan muncul mata dadu 2

muncul mata dadu 2 = 6 + 3

muncul mata dadu 2 = 9

∴ Jadi taksiran terbaik muncul mata dadu 2 jika dilakukan pelemparan 18 kali lagi adalah 9.

Pelajari lebih lanjutMenghitung peluang empirik pada pengambilan kelereng https://brainly.co.id/tugas/22600646Menghitung peluang empirik pada pelemparan dadu https://brainly.co.id/tugas/22639692----------------------------------------------------------Detil jawaban

Kelas: 8

Mapel: Matematika

Bab: Peluang

Kode: 8.2.10

Kata kunci: peluang empirik, mata dadu, frekuensi harapan, peluang, frekuensi


7. Uji kompetensi bab 9 untuk kelas 7 semester 2


Uji kompetensi bab 9 untuk kelas 7 semester 2

cara mengumpulkan data
a) observasi yaitu cara pengumpulan data dengan cara mengamati langsung atau mengamati obyek secara langsung agar mendapatkan data yang akurat
b) wawancara yaitu cara pengumpulan data dengan cara mengajukan pertanyaan kepada obyek atau nara sumber secara langsung, biasanya tentang masalah data kualitatif
c) kuesioner yaitu cara pengumpulan data dengan cara mengajukan pertanyaan kepada nara sumber dalam bentuk tertulis, biasanya berhubungan dengan pendapat atau tingkah laku, dan nara sumber tidak perlu hawatir karena biasanya namanya dirahasiakan
d) angket sama dengan kuesioner
e) dokumen yaitu cara pengumpulan data dengan cara melihat data-data yang sudah ada dan sudah disimpan atau di dokumenkan

diagram batang → biasanya digunakan untuk membandingkan data dalam kurun waktu tertentu
diagram lingkaran → penyajian data dalam bentuk prosentase 
diagram garis → menggambarkan data yang kontinu, misalkan dalam harian , dalam bulanan atau dalam tahunan
diagram lambang → sebagai alat bagi orang awam agar lebih mudah memahami masalah

soal nomor 1)

cara yang paling tepat untuk mengumpulkan data tentang tinggi badan siswa dikelasmu, adalah ...
a) observasi
b) angket
c) kuesioner
d) dokumen

jawaban : A observasi

soal nomor 2)

cara yang paling tepat untuk mengumpulkan data tentang acara televisi paling disukai ditetanggamu adalah ,...
a) observasi
b) angket
c) kuesioner
d) dokumen

jawaban : B atau C benar angket atau kuesioner

soal nomor 3)

Cara yang paling tepat untuk mengumpulkan data tentang alat transportasi ke sekolah yang digunakan siswa di kelasmu, adalah... 

a) Observasi
b) Angket
c) Kuesioner 
d) Dokumen
 jawaban : C kuesioner

soal nomor 4)

Penyajian data yang paling tepat untuk menggambarkan keadaan nilai tukar rupiah terhadap dolar AS dalam kurun waktu sepekan adalah ...
a) Diagram Batang
b) Diagram Lingkaran
c) Diagram Garis 
d) Diagram Lambang

jawaban : C diagram garis

soal nomor 5)

Penyajian data yang paling tepat untuk menggambarkan nilai UAS pelajaran matematika di kelas 7A adalah ...
a) Diagram Batang 
b) Diagram Lingkaran
c) Diagram Garis 
d) Diagram Lambang 

jawaban : A diagram batang

soal nomor 6)

Penyajian data yang paling tepat untuk menggambarkan prosentase jenis pekerjaan orang tua siswa kelas 7 adalah ...
a) Diagram Batang 
b) Diagram Lingkaran
c) Diagram Garis
d) Diagram Lambang
jawaban : B diagram lingkaran

untuk menyelesaikan soal nomor 7 dan 8 perhatikan tabel pada lampiran 1

soal nomor 7)

jumlah siswa terbanyak ada di kelas ...
a) 7A
b) 7B
c) 7E
d) 7F

kelas 7A → 14 + 18 = 32
kelas 7B → 15 + 16 = 31
kelas 7E → 15 + 18 = 33
kelas 7F → 17 + 19 = 36

jawaban D kelas 7F

soal nomor 8)

selisih tertinggi siswa laki-laki dengan siswa perempuan ada di kelas ...
a) 7A
b) 7B
c) 7C
d) 7D

kelas 7A → selisih siswa laki-laki dan perempuan 18 - 14 = 4
kelas 7B → selisih siswa laki-laki dan perempuan 16 - 15 = 1
kelas 7C → selisih siswa laki-laki dan perempuan 18 - 11 = 7
kelas 7D → selisih siswa laki-laki dan perempuan 16 - 12 = 4

jawaban : C kelas 7C

============================================================

kelas : 9 untuk kurikulum 2013 ini kelas 7 
mapel : matematika
kategori : statistika
kata kunci : diagram garis

kode : 9.2.3 [matematika SMP kelas 9 bab 3 statistika]

Simak lebih lanjut di Brainly.co.id - brainly.co.id/tugas/10257187#readmore















8. jawaban matematika hal 97 uji kompetensi 6 kelas7 semester 2


jawaban matematika hal 97 uji kompetensi 6 kelas7 semester 2

17.  Pak Budi meminjam uang di bank sebesar Rp 1.000.000 dengan bunga 18% pertahun.Tentukan keseluruhan nominal yang harus dikembalikan oleh pak Budi. Jika akan meminjam selama 6 bulan ...

18.  Pak Yudi akan meminjam uang di bank dengan persentase bunga sebesar 12% pertahun. besar bunga uang yang dipinjam oleh pak Yudi selama 9 bulan adalah Rp 72.000,00 rupiah. tentukan jumlah uang yang dipinjam oleh pak Yudi dari bank tersebut ...

Aritmetika sosial merupakan salah satu materi matematika yang mempelajari operasi dasar suatu bilangan yang berkaitan dengan kehidupan sehari-hari.

Bunga = p% × [tex]\frac{b}{12}[/tex] × modal

PembahasanNo 17.

Diketahui :

Pinjaman (m) = Rp 1.000.000

bunga (p) = 18% per tahun

lama (b) = 6 bulan

Ditanya :

keseluruhan nominal yang harus dikembalikan oleh pak Budi ?

Jawab :

Bunga = p% × [tex]\frac{b}{12}[/tex] × modal

           = [tex]\frac{18}{100}[/tex] × [tex]\frac{6}{12}[/tex] × Rp 1.000.000

           = Rp 90.000

Pengembalian = Pinjaman + bunga

                        = Rp 1.000.000 + Rp 90.000

                        = Rp 1.090.000

Jadi keseluruhan nominal yang harus dikembalikan oleh pak Budi adalah Rp 1.090.000   (B)

No 18.

Diketahui : 

bunga = Rp 72.000

suku bunga (p) = 12 %

lama (b) = 9 bulan

Ditanya : 

Jumlah uang yang dipinjam ?

Jawab : 

 bunga = [tex]\frac{p}{100} \times \frac{b}{12} \times~ pinjaman[/tex]

72.000 = [tex]\frac{12}{100} \times \frac{9}{12} \times~ pinjaman[/tex]

72.000 = [tex]\frac{9}{100}[/tex] × pinjaman

pinjaman =  \frac{100}{9}   × 72.000

               = 100 × 8000

               = 800.000

Jadi jumlah uang yg dipinjam oleh pak Yudi di bank tersebut adalah Rp 800.000,-       (C)


Pelajari lebih lanjut tentang Aritmetika SosialPak Yudi akan meminjam uang di Bank dengan persentase bunga sebesar 10% pertahun. Besar uang yang dipinjam oleh Pak Yudi adalah 12 juta rupiah. Angsuran tiap bulan → brainly.co.id/tugas/9006736Angsuran yang dibayarkan per bulan → brainly.co.id/tugas/9006740Lama mengangsur. Pak Eko meminjam uang di bank sejumlah rp 1.200.000, 00 dengan bunga 18% pertahun → brainly.co.id/tugas/9411421Harga pembelian yg menderita kerugian (UN 2017) → brainly.co.id/tugas/10501599Harga beli sepeda → brainly.co.id/tugas/11966182Detil Jawaban Kelas        : 7 SMPMapel       : MatematikaBab           : 7 - Aritmetika SosialKode         : 7.2.7Kata kunci : aritmetika sosial, meminjam uang, pengembalian

Semoga bermanfaat



9. jawaban matematika kelas 7 semester 2 uji kompetensi 6 halaman 94​ No1 sampai 10


Jawaban matematika kelas 7 semester 2 uji kompetensi 6 halaman 94 No 1 sampai 10. Soal yang disajikan adalah soal tentang keuntungan dan kerugian dalam aritmatika sosial

Pembahasan

1. Tentukan kondisi berikut manakah yang menunjukkan kondisi rugi

Jawab

Kondisi rugi dialami jika pengeluaran lebih besar dari pemasukan, maka jawabannya adalah A, yaitu besarnya kerugiannya  

= Rp900.000,00 – Rp700.000,00

= Rp200.000,00

Jawaban A

2. Seorang pedagang mengeluarkan modal Rp1.500.000,00 untuk menjalankan usahanya. Jika pada hari itu ia mendapatkan keuntungan sebesar 10%, maka besar pendapatan yang ddapatkan pada hari itu adalah …

Jawab

Besar keuntungan

= 10% × modal

= [tex]\frac{10}{100}[/tex] × Rp1.500.000,00

= Rp150.000,00

Jadi pendapat yang diperoleh

= modal + untung

= Rp1.500.000,00 + Rp150.000,00

= Rp1.650.000,00

Jawaban A

3. Pak Dedi membeli sepeda motor bekas dengan harga Rp5.000.000,00. Dalam waktu satu minggu motor tersebut dijual kembali dengan harga 110% dari harga belinya. Tentukan keuntungan Pak Dedi

Jawab

Harga jual motor

= 110% × harga beli

= [tex]\frac{110}{100}[/tex] × Rp5.000.000,00

= Rp5.500.000,00

Besarnya keuntungan

= Harga jual – harga beli

= Rp5.500.000,00 – Rp5.000.000,00

= Rp500.000,00

Jawaban A

4. Pak Candra membeli sepeda bekas dengan harga Rp500.000,00. Dalam waktu satu minggu motor tersebut dijual kembali dengan harga 110% dari harga belinya. Tentukan keuntungan Pak Candra

Jawab

Harga jual sepeda

= 110% × harga beli

= [tex]\frac{110}{100}[/tex] × Rp500.000,00

= Rp550.000,00

Besarnya keuntungan  

= Harga jual – harga beli

= Rp550.000,00 – Rp500.000,00

= Rp50.000,00

Jawaban C

5. Pak Edi membeli mobil dengan harga Rp160.000.000,00. Setelah 6 bulan dipakai, Pak Edi menjual mobil tersebut dengan harga Rp140.000.000,00. Tentukan taksiran terdekat persentase kerugian yang ditanggung oleh Pak Edi

Jawab    

Besarnya kerugian

= Harga beli – harga jual  

= Rp160.000.000,00 – Rp140.000.000,00

= Rp20.000.000,00

Persentase kerugian

= [tex]\frac{Rugi}{Harga \: beli}[/tex] × 100%

= [tex]\frac{Rp20.000,00}{Rp160.000.000,00}[/tex]  × 100%

= [tex]\frac{1}{8}[/tex]  × 100%

= 12,5%

12%

Jawaban D

6. Pak Fandi membeli sepetak tanah dengan harga Rp40.000.000,00. 1 tahun kemudian Pak Fandi menjual tanah tersebut dengan keuntungan sekitar 16%. Tentukan taksiran terdekat harga jual tanah milik Pak Fandi

Jawab

Besarnya keuntungan

= 16% × harga beli

= [tex]\frac{16}{100}[/tex]  × Rp40.000.000,00

= Rp6.400.000,00

Harga jual tanah

= harga beli + untung

= Rp40.000.000,00 + Rp6.400.000,00

= Rp46.400.000,00

Jawaban C

7. Seorang pedagang bakso mengeluarkan modal sebesar Rp1.000.000,00 untuk menjalankan usahanya. Dia mematok harga baksonya adalah Rp11.000,00 per porsi. Jika ia merencanakan ingin mendapatkan keuntungan minimal Rp200.000,00 dari usaha baksonya tersebut, maka berapa porsi minimal yang harus dibuat

Jawab  

Pendapatan yang diharapkan

= Modal + Untung

= Rp1.000.000,00 + Rp200.000,00

= Rp1.200.000,00

Banyak porsi yang dibuat

= Pendapatan ÷ harga per porsi

= Rp1.200.000,00 ÷ Rp11.000,00

= 109,09

≈ 110

Jadi agar mendapatkan keuntungan, maka porsi yang dibuat harus lebih besar dari 109,09 porsi yaitu sebanyak 110 porsi.

Jawaban C

8. Diantara keempat penjual tersebut yang mendapat keuntungan terbesar adalah

Jawab

Besar keuntungan yang diperoleh

Penjual A = [tex]\frac{20}{100}[/tex]  × Rp100.000,00 = Rp20.000,00 Penjual B = [tex]\frac{15}{100}[/tex]  × Rp200.000,00 = Rp30.000,00 Penjual C = [tex]\frac{10}{100}[/tex]  × Rp400.000,00 = Rp40.000,00 Penjual C = [tex]\frac{5}{100}[/tex]  × Rp600.000,00 = Rp30.000,00

Jadi penjual yang mendapat keuntungan terbesar adalah penjual C

Jawaban C

9. Seorang penjual bakso mengeluarkan modal sebesar Rp1.000.000,00 untuk menjalankan usahanya. Dia mematok harga baksonya adalah Rp9.000,00 per porsi. Jika pada hari itu ia menanggung kerugian sebesar 5%, maka taksirlah berapa porsi yang terjual pada hari itu

Jawab

Besar kerugian

= 5% × Modal

= [tex]\frac{5}{100}[/tex]  × Rp1.000.000,00

= Rp50.000,00

Besar pendapatan yang diperoleh penjual

= Modal – kerugian

= Rp1.000.000,00 – Rp50.000,00

= Rp950.000,00

Banyak porsi bakso yang terjual

= Pendapatan ÷ harga per porsi

= Rp950.000,00 ÷ Rp9.000,00

= 105,56

≈ 106

Jawaban D

10. Seorang penjual sate mengeluarkan modal sebesar Rp1.200.000,00 untuk menjalankan usahanya. Dia mematok harga satenya adalah Rp9.000,00 per porsi. Jika ia merencanakan ingin mendapatkan keuntungan dari jualannya tersebut, maka penjual sate tersebut minimal harus membuat …. Porsi

Jawab

Banyak porsi sate yang harus dijual  

= Modal ÷ harga per porsi

= Rp1.200.000,00 ÷ Rp9.000,00

= 133,33

134

Jawaban B

Pelajari lebih lanjut  

Contoh soal lain tentang aritmatika sosial

Harga jaket agar untung 25%: brainly.co.id/tugas/9287533 Harga jual dengan diskon 50%: brainly.co.id/tugas/9444121 Harga jual agar untung 20%: brainly.co.id/tugas/2692228

------------------------------------------------

Detil Jawaban    

Kelas : 7

Mapel : Matematika

Kategori : Aritmatika Sosial

Kode : 7.2.7

#AyoBelajar


10. jawaban uji kompetensi 9 matematika kelas 8 semester 2 hal 263​


Oke jawaban untuk soal uji kompetensi 9 matematika kelas 8 semester 2 revisi 2017 halaman 263 adalah yang kakak lampirkan di gambar di bawah ya! Tapi kakak kerjain yang pilihan gandanya aja, semangat adik-adik semua!

Pembahasan

Halo teman-teman! Balik lagi di Brainly!! Masih semangat untuk belajar kan! Kali ini kita akan membahas materi mengenai statistika tetapi kali ini kakak kasih penjelasan singkatnya tentang mean atau rata-rata dan median ya. Salah satu hal yang paling penting dalam menggambarkan distribusi dari suatu data adalah melalui nilai pusat data pengamatan (Central Tendency). Untuk setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan) dikenal sebagai ukuran pemusatan data atau tendensi sentral. Terdapat tiga ukuran pemusatan data yang sering digunakan, yaitu: mean atau rata-rata hitung / rata-rata aritmatika, median, dan modus. Kemudian rata-rata hitung atau rata-rata aritmatika atau sering disebut dengan istilah mean saja dihitung dengan menjumlahkan semua nilai data pengamatan kemudian dibagi dengan banyaknya data. Nah kalau median itu artinya nilai dari data tengah, dan modus sendiri adalah nilai yang paling sering muncul. Oke! Langsung aja yuk kita lihat penjelasan dari jawaban soal di atas yang sudah kakak lampirkan di bawah ya! Semangat! Semoga membantu adik-adik semua!

Pelajari Lebih Lanjut

Adik-adik semua masih kepingin belajar dan memperdalam materi di atas? Yuk cek aja link-link yang ada di bawah ini ya! Semangat!

Contoh soal mencari simpangan kuartil : https://brainly.co.id/tugas/1203389 Contoh soal mencari jangkauan data mula-mula : https://brainly.co.id/tugas/15027349 Contoh soal mencari nilai rata-rata yang tidak mungkin : https://brainly.co.id/tugas/15064512

Detail Jawaban

Kelas : 7 SMP

Mapel : Matematika

Bab : 9 - Statistika

Kode : 7.2.2009

Kata Kunci : Rata-Rata, Mean, Median, Data Tengah, Kuartil Bawah, Kuartil Atas, Statistika, Modus.


11. jawaban dan cara uji kompetensi 7 kelas 7 semester 2​


Mata pelajaran : matematika

Diketahui : Sudut P Dan Sudut q Adalah Sudut Dalam Sepihak <q = 122°

Ditanya : <q = ... ?

Jawab :

<p + <q = 180°

<p + 112° = 180°

<p = 180° - 112°

<p = 68°


12. Uji kompetensi 5, hal 240, matematika kelas 8 semester 1, nomor 6-10​


jawabannya kak

6.b

7.c

8.b

9.c

10.a


13. uji kompetensi 7 jawaban matematika kelas 8 semester 2 halaman 113-114


Jawaban Uji Kompetensi 7 Matematika Kelas 8 Semester 2 PG

Jawaban Pendahuluan

Soal matematika di atas merupakan materi dari lingkaran.

Pembahasan

Lingkaran adalah suatu geometri bidang atau bangun datar dimana terdapat kumpulan titik-titik yang mempunyai jarak yang bernilai sama atau tetap terhadap titik tunggal yang bersifat semu, sehingga titik-titik tersebut membentuk garis tertutup berupa lengkungan dalam satu putaran penuh secara berulang-ulang.

Pada suatu bidang lingkaran, terdapat jari-jari lingkaran (r) dan diameter lingkaran (d), sehingga bentuk persamaannya yaitu r = d/2 atau d = 2r. Rumus umum lingkaran adalah dengan menggunakan nilai konstanta pi/phi yang dinotasikan dalam π yang mempunyai nilai bilangan riil yang mendekati bilangan pecahan 22/7 dan bilangan desimal 3,14 sehingga ditulis menjadi π ≈ 22/7 ≈ 3,14.

Rumus menghitung keliling lingkaran

K = π ⋅ 2r

K = π ⋅ d

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

K busur = π ⋅ d  ⋅ (m∠ / 360° )

Rumus menghitung luas lingkaran

L = π ⋅ r ⋅ r = π ⋅ r²

L = π ⋅ d/2 ⋅ d/2 = π ⋅ d²/4

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

L juring = π ⋅ d²/4  ⋅ (m∠ / 360° )

Rumus untuk menghitung garis singgung persekutuan dua lingkaran adalah dengan menggunakan teorema Pythagoras, dimana j adalah garis singgung luar atau dalam lingkaran, p adalah jarak antara kedua titik pusat lingkaran, dan R dan r sebagai jari-jari lingkaran besar dan kecil.

Rumus garis singgung luar lingkaran

j² = p² - (R - r)²

Rumus garis singgung dalam lingkaran

j² = p² - (R + r)²

1.

Dik: Juring @ m∠ pusat = 90°, L = 78,5cm² (π = 3,14)

Dit: r=?

Jawab:

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

78,5cm² = 3,14 ⋅ r²  ⋅ (90°  / 360° )

100cm²  = r²

r = 10cm ... (pilihan A)

2.

Dik: Busur @ K = 22cm, m∠ pusat = 120° (π = 22/7)

Dit: r=?

Jawab:

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

22cm = 22/7 ⋅ 2r ⋅ (120° / 360° )

r = 10,5cm ... (pilihan tidak ada)

3.

Dik: Busur @ K = 16,5cm, d = 42cm (π = 22/7)

Dit: m∠ pusat=?

Jawab:

K busur = π ⋅ d ⋅ (m∠ / 360° )

16,5cm = 22/7 ⋅ 42cm ⋅ (m∠ / 360° )

m∠ = 45°  ... (pilihan A)

4.

Dik: Juring @ L = 57,75cm², m∠ pusat = 60°  (π = 22/7)

Dit: d=?

Jawab:

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

57,75cm² = 22/7 ⋅ r²  ⋅ (60°  / 360° )

110,25cm² = r²

r = 10,5cm  ... (pilihan B)

5.

Dik: Busur @ r = 21cm, m∠ pusat = 30°  (π = 22/7)

Dit: K=?

Jawab:

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

K busur = 22/7 ⋅ 2(21cm) ⋅ (30° / 360° )

K busur = 11cm  ... (pilihan A)

6.

Dik: Lingkaran O

Dit: m∠BAD=?

Jawab:

2 ⋅ Sudut keliling = Sudut pusat

2 ⋅ m∠BAD = 110°

m∠BAD = 55° ... (pilihan A)

7.

Dik: Lingkaran O

Dit: m∠AOB=?

Jawab:

m∠APB + m∠AQB + m∠ARB = 144°

3 ⋅ Sudut keliling = 144°

Sudut keliling = 48°

2 ⋅ Sudut keliling = Sudut pusat

2 ⋅ 48° = m∠AOB

m∠AOB = 96°  ... (pilihan tidak ada)

8.

Dik: Lingkaran @ d = 0,6m

Jarak = 10000km = 10000000m

Dit: Putaran=?

Jawab:

K lingkaran * putaran = jarak

π ⋅ d * n  = 10000000m

3,14 ⋅ 0,6m * n  = 10000000m

n ≈ 5000000  ... (pilihan D)

9.

Dik: Persegi @ s = 26cm

2 buah 1/4 lingkaran @ r = 14cm

Dit: K arsir=?

Jawab:

K = K persegi + K lingkaran

K = 4s + 2 ⋅ 1/4 ⋅ π ⋅ 2r

K = 4(26cm) + 1/2 ⋅ 22/7 ⋅ 2(14cm)

K = 158cm ... (pilihan C)

10.

Dik: Persegi @ s = 14cm

1/2 lingkaran @ d = 14cm, r = 7cm

Dit: L arsir=?

Jawab:

L = L persegi + L lingkaran

L = s²  + 1/2 ⋅ π ⋅ r²

L = (14cm)² + 1/2 ⋅ 22/7 ⋅ (7cm)²

L = 273cm² ... (pilihan C)

11.

Dik: Singgung luar

j = 12cm, rC = 7,5cm, rD = 4cm

Dit: p=?

Jawab:

p² = j² + (rC - rD)²

p² = (12cm)² + (7,5cm - 4cm)²

p = √156,25 cm²

p = 12,5cm ... (pilihan A)

12.

Dik: Singgung dalam

p = 7,5cm, rA = 2,5cm, rB = 2cm

Dit: j=?

Jawab:

j² = p² - (rA + rB)²

j² = (7,5cm)² - (2,5cm + 2cm)²

j = √36 cm²

j = 6cm ... (pilihan C)

13.

Dik: Singgung luar

R = 1,5cm, p = 2,5cm, j = 2,4cm

Dit: j=?

Jawab:

(R - r)² = p² -  j²

(1,5cm - r)²  = (2,5cm)² - (2,4cm)²

(1,5cm - r) ²  = 0,49cm²

1,5cm - r  = 0,7cm

r = 0,8cm ... (pilihan B)

14.

Dik: Singgung luar

R = 19cm, r = 10cm, j = 40cm

Dit: p=?

Jawab:

p² = j² + (R - r)²

p² = (40cm)² + (19cm - 10cm)²

p = √1681cm²

p = 41cm ... (pilihan A)

15.

Dik: Singgung luar

p = 17cm, j = 15cm

Dit: p=?

Jawab:

(R - r)² = p² -  j²

(R - r)²  = (17cm)² - (15cm)²

R - r = 8cm

R = 10cm dan r = 2cm ... (pilihan D)

16.

Dik: Singgung luar

p = 15cm, j = 12cm

Dit: p=?

Jawab:

(R - r)² = p² -  j²

(R - r)²  = (15cm)² - (12cm)²

R - r = 9cm

R = 12cm dan r = 3cm ... (pilihan B)

17.

Dik: Singgung luar

r1 = 13cm, p = 20cm, j = 16cm

Dit: r2=?

Jawab:

(R - r)² = p² -  j²

(R - r)²  = (20cm)² - (16cm)²

13cm - r = 12cm

r = 1cm ... (pilihan B)

18.

Dik: Singgung luar

D = 15cm, R = 7,5cm

d = 10cm, r = 5cm

p = 70cm

Dit: j=?

Jawab:

j² = p² - (R - r)²

j² = (70cm)² - (7,5cm - 5cm)²

j ≈ 69cm ... (pilihan A)

19.

Dik: Singgung dalam

j = 10cm, p = 8cm

Dit: p=?

Jawab:

(R + r)² = p² -  j²

(R + r)²  = (10cm)² - (8cm)²

R + r  = 6cm

R = 5cm dan r = 1cm ... (pilihan B)

20.

Dik: Singgung dalam

p = 20cm, j = 16cm, r1 = 10cm

Dit: p=?

Jawab:

(r1 + r2)² = p² -  j²

(10cm + r2)²  = (20cm)² - (16cm)²

10cm + r2  = 12cm

r2 = 2cm ... (pilihan A)

Kesimpulan

Pelajari lebih lanjut

-----------------------------

Detil Jawaban

Kelas : VIII/8 (2 SMP)

Mapel : Matematika

Bab : Bab 7 - Lingkaran

Kode : 8.2.7

Kata Kunci : lingkaran, juring, busur, sudut pusat, sudut keliling, persinggungan lingkaran

===


14. Kunci jawaban Matematika kelas 7 semester 2 Hal. 10 Uji kompetensi 5.1


Kunci jawaban Matematika kelas 7 semester 2 Hal. 10 Uji kompetensi 5.1. Latihan soal halaman 10 matematika kelas 7 adalah “Ayo kita berlatih 5.1” yang terdiri dari 10 soal tentang perbandingan. Karena pertanyaannya terlalu banyak (tidak sesuai dengan poin yang diberikan), maka disini kita akan membahas 3 soal saja yaitu no 1, 3 dan 4. Namun adik tidak perlu khawatir, untuk jawaban yang lain, bisa adik lihat di link yang diberikan pada “pelajari lebih lanjut


Pembahasan
Nomor 1

Kalian dapat menjelaskan ukuran sebuah pohon dengan

membandingkannya terhadap pohon lain atau benda yang lain


a) Anton mengatakan bahwa perbandingan diameter ramin terhadap diameter ulin adalah 1 : 6. Apakah pernyataan Anton benar? jelaskan!

Jawab

diameter Ramin : diameter Ulin

= 20 : 120

= (20 ÷ 20) : (120 ÷ 20)

= 1 : 6

Jadi pernyataaan Anton adalah Benar


b) Ria mengatakan bahwa selisih tinggi damar dan gaharu adalah 25 m. Apakah benar? Jelaskan!

Jawab

Selisih adalah perbedaan nilai antara dua bilangan dengan operasi hitung pengurangan nilai yang besar dengan nilai yang kecil  

= Tinggi Damar – Tinggi Gaharu

= 65 m – 40 m

= 25 m

Jadi pernyataan Ria adalah Benar


c) Leni mengatakan bahwa keliling ulin sekitar 3 per 4 kali keliling damar, apakah benar? jelaskan!

Jawab

Untuk menjawab pertanyaan tersebut, kita gunakan perbandingan antara keliling Ulin dan Keliling Damar

[tex]\frac{Keliling \: Ulin}{Keliling \: Damar} = \frac{\pi d_{Ulin}}{\pi d_{Damar}} [/tex]

[tex]\frac{Keliling \: Ulin}{Keliling \: Damar} = \frac{d_{Ulin}}{d_{Damar}} [/tex]

[tex]\frac{Keliling \: Ulin}{Keliling \: Damar} = \frac{120}{150} [/tex]

[tex]\frac{Keliling \: Ulin}{Keliling \: Damar} = \frac{120 \div 30}{150 \div 30} [/tex]

[tex]\frac{Keliling \: Ulin}{Keliling \: Damar} = \frac{4}{5} [/tex]

5 Kelilling Ulin = 4 Keliling Damar

Keliling Ulin = [tex]\frac{4}{5} [/tex] Keliling Damar

Jadi pernyataan Leni adalah salah, seharusnya keliling Ulin itu sekitar 4 per 5 kali keliling Damar




Nomor 3

Dalam tes menguji rasa dua jenis susu kotak, 780 siswa memilih

Fullcream. Hanya 220 siswa yang memilih Hi-Cal. Lengkapi setiap

pernyataan berikut


a. Terdapat ... siswa lebih banyak yang memilih Fullcream.

Jawab

Selisih siswa yang memilih fullcream dan Hi-cal

= 780 – 220

= 560

Jadi terdapat 560 siswa lebih banyak yang memilih Fullcream.


b. Siswa yang memilih Fulcream lebih banyak daripada yang

memilih Hi-Cal dengan rasio ... : ....

Jawab

Fullcream : Hi-cal

= 780 : 220

= (780 ÷ 20) : (220 ÷ 20)

= 39 : 11




Nomor 4

Kelas VIID di SMP Mandala mengumpulkan data berbagai jenis film

yang disukai oleh siswa kelas VII dan VIII


a) Perbandingan banyak siswa kelas VII yang memilih film drama terhadap banyak siswa kelas VIII yang memilih drama

Jawab

= 105 : 150

= (105 ÷ 15) : (150 ÷ 15)

= 7 : 10


b) Pecahan yang menyatakan jumlah seluruh siwa (kelas VII dan kelas VIII) yang memilih film action

Jawab

Ada kesalahan hitung dalam soal yaitu jumlah seluruh kelas VIII seharusnya = (80 + 150) siswa = 230 siswa (bukan 240 siswa), sehingga jumlah seluruh siswa adalah = (180 + 230) siswa = 410 siswa

Jadi pecahan yang menyatakan jumlah seluruh siwa (kelas VII dan kelas VIII) yang memilih film action

= [tex]\frac{jumlah \: siswa \: yang \: memilih \: film \: action}{jumlah \: seluruh \: siswa}[/tex]

= [tex]\frac{80 + 75}{410}[/tex]

= [tex]\frac{155}{410}[/tex]

= [tex]\frac{155 \div 5}{410 \div 5}[/tex]

= [tex]\frac{31}{82}[/tex]


c) Perbandingan banyak siswa (kelas VII dan kelas VIII) yang memilih film drama terhadap banyak siswa (kelas VII dan kelas VIII) yang memilih film action

Jawab

= (105 + 150) : (75 + 80)

= 255 : 155

= (255 ÷ 5) : (155 ÷ 5)

= 51 : 31



Pelajari lebih lanjut  

Jawaban soal no 2

https://brainly.co.id/tugas/1400489


Jawaban soal no 4 jika ada ralat siswa kelas VIII yang menyukai Action adalah 90 orang

https://brainly.co.id/tugas/8992914


Jawaban soal no 5

https://brainly.co.id/tugas/4465336


Jawaban soal no 6

https://brainly.co.id/tugas/9000937


Jawaban soal no 7

https://brainly.co.id/tugas/1188997


Jawaban soal no 8

https://brainly.co.id/tugas/1134587


Jawaban soal no 9

https://brainly.co.id/tugas/1126663


Jawaban soal no 10

https://brainly.co.id/tugas/1344786


------------------------------------------------


Detil Jawaban    

Kelas : 7

Mapel : Matematika

Kategori : Perbandingan

Kode : 7.2.5


Kata Kunci : Kunci jawaban Matematika kelas 7 semester 2 Hal. 10 Uji kompetensi 5.1


15. matematika kelas 7 semester 2 uji kompetensi 5 nomor 7 dan 8


Jadi Pak Bambang menghabiskan 36,4 liter dari Medan sampai Padang

Pembahasan

Jarak Hari pertama = 358 km

Volume Hari pertama = 358/20

Volume Hari pertama = 17,9  Liter


Jarak Hari kedua = 370 km

Volume Hari kedua = 370/20

Volume Hari kedua = 18,5 liter


Total Volume = 36,4 Liter


Jadi Pak Bambang menghabiskan 36,4 liter dari Medan sampai Padang


Pelajari lebih lanjut

1. Materi tentang  contoh soal  bilangan sejenis brainly.co.id/tugas/15691989

2.  Materi mengurutkan bilangan https://brainly.co.id/tugas/1376412

3. Contoh soal tentang bilangan sejenis https://brainly.co.id/tugas/20272232

 ----------------------------

Detil Jawaban

Kelas : 7  

Mapel : Matematika

 Bab : Bab 2 - Bilangan

 Kode : 7.2.2  

Kata Kunci: jarak, volume



16. kunci jawaban matematika kelas 7 semester 1 himpunan uji kompetensi 2​


Jawaban:

Uji Kompetensi 2 Semester 1

A. Soal Pilihan Ganda

1. Di antara kumpulan berikut yang termasuk himpunan adalah

a. Kumpulan gunung yang tinggi

b. Kumpulan bunga yang baunya harum

c. Kumpulan hewan berkaki empat

d. Kumpulan siswa yang pandai

2. Kumpulan-kumpulan berikut ini yang bukan himpunan adalah ...

a. Kumpulan siswa yang tingginya kurang dari 150 cm

b. Kumpulan bilangan cacah antara 2 dan 10

C. Kumpulan siswa yang berbadan kurus

d. Kumpulan bilangan asli kurang dari 10

3. Himpunan A = {1, 3, 5, 7, 9}, bila himpunan A dinyatakan dengan menyebutkan sifat keanggotaanya adalah

a. A = {himpunan bilangan antara 0 sampai 10

b. A = {himpunan bilangan ganjil antara 1 sampai 9)

c. A = {himpunan bilangan prima antara 0 sampai 10}

d. A = {himpunan bilangan ganjil antara 0 sampai 10}

4. himpunan semesta untuk himpunan A={1,2,3,4,5},B={x|x<2,xe bilangan bulat},dan C={bilangan asli kelipatan 3 yang kurang dari 30} adalah...

a.himpunan bilangan asli

b.himpunan bilangan cacah

c.himpunan bilangan bulat

d.himpunan bilangan cacah yang kurang dari 30

5. Banyaknya himpunan bagian dari K = {a, b, c, d, e) yang mempunyai dua anggota adalah

a. 4 himpunan

b. 8 himpunan

c. 12 himpunan

d. 16 himpunan

6. Diberikan diagram Venn yang menyatakan himpunan A dan B, maka A - B adalah

a.{a,b}

b. {b,c}

c. {e,

d. {g, h)

7. Jika P = {bilangan prima kurang dari 12} dan Q = {bilangan asli kurang dari 12}, pernyataan berikut yang benar adalah

a. 9 bukan anggota dari himpunan P dan Himpunan P bukan himpunan bagian dari himpunan Q

b. 5 bukan anggota dari himpunan P dan Himpunan P adalah himpunan bagian dari himpunan Q

c. 9 adalah anggota himpunan P dan Himpunan P bukan himpunan bagian dari himpunan Q

d. 5 adalah anggota himpunan P dan Himpunan P adalah himpunan bagian dari himpunan Q

8. Dari himpunan berikut yang merupakan himpunan kosong adalah...

a. Himpunan bilangan prima genap

b. Himpunan nama-nama hari yang diawali dengan huruf P

c. Himpunan binatang berkaki 4

d. Himpunan bulan yang diawali dengan huruf N

9. Himpunan semesta dari himpunan A = {0, 4, 8, 12, 16) adalah ...

a. Himpunan bilangan asli

b. Himpunan bilangan ganjil

c. Himpunan bilangan cacah

d. Himpunan bilangan prima

10. Himpunan P = {x|2<x 8, x e Bilangan Asli), jika dinyatakan dengan mendaftar anggota-anggotanya adalah ...

a. {3,4,5,6,7

b. 3, 4, 5, 6, 7,

c. {2, 3, 4, 5, 6, 7}

d. 2, 3, 4, 5, 6, 7, 8)

11. Diketahui A = {x15x8, xe bilangan Asli). Banyaknya himpunan bagian dari A yang terdiri dari 3 anggota adalah ...

a. 1

b. 2

c. 3

d. 4

12. Diketahui A= {x|0<x<3, X e Bilangan Cacah dan B = {1,2,3,4,5). Irisan A dan B adalah

a. {1, 2}

b. {0, 1, 2}

c. {1,2,3}

d. {0, 1, 2, 3, 4)

13. Diberikan S = {1, 2, 3, 4, 5, 6, 7, 8, 9,10), A = {1, 2, 3, 4, 5), dan B= {4, 5, 6, 7, 8). Anggota dari A U B adalah

a. 6, 7, 8, 9)

b. {4, 5, 6, 7, 8, 9, 10}

c. {1, 2, 3, 4, 5)

d. {1, 2, 3, 4, 5, 6)

14. Banyaknya himpunan bagian dari Y ={bilangan prima lebih dari 6 dan kurang dari 20) adalah

a. 8

b. 16

c. 32

d. 64

15. Diketahui S={1, 2, 3, 4, 5, 6, 7, 8), A={1, 2, 3), dan B = {3,4,5,6). Anggota dari (A-B) B adalah

a. o

b. {3}

c. {1, 2}

d. {1,2,3}

16. Diketahui himpunan A = {1,2,3,4}, B = {bilangan prima kurang dari 6), dan C = {x|2<x< 7 x e bilangan Asli). Anggota dari (AUB) nC adalah

a. {1,2,3,4,5

b. {2,3,4,5)

c. {1,2,3,4}

d. {3,4,5)

17. Dalam suatu kelas terdapat 30 orang siswa. Di antaranya, ada 20 siswa senang pelajaran Matematika, 15 orang siswa senang pelajaran Fisika, dan 10 orang siswa senang keduanya. Banyaknya siswa yang tidak senang keduanya adalah

a. 3

b. 4

c. 5

d. 6

18. Suatu kelas yang berjumlah 25 siswa, terdapat 20 orang siswa yang senang sepak bola, 15 orang siswa senang bulu tangkis, dan 3 orang siswa tidak senang keduanya. Banyaknya siswa yang senang keduanya adalah

a. 3

b. 5

c. 8

d. 10

19. Dalam suatu kelas terdapat 20 orang siswa senang minum susu, 15 orang siswa senang minum teh, 5 siswa senang minum keduanya, dan 3 orang siswa tidak senang keduanya. Banyaknya siswa dalam kelas tersebut ada

Kunci Jawaban Uji Kompetensi Halaman 185 Semester 1

A. Pilihan Ganda

1. C

2. C

3. D

4. C

5. B

6. D

7. B

8. C

9. D

10. D

11. C

12. B

13. C

14. A

15. D

16. C

17. A

18. D

19. C

20. D

21. B

jadikan jawaban tercerdas!!!


17. Jawaban Matematika kelas 7 semester 2 uji kompetensi 5 halaman 53?


Jawaban Matematika kelas 7 semester 2 uji kompetensi 5 halaman 53 adalah Soal Perbandingan

Pembahasan :

1. Terdapat 42 siswa yang mengikuti kelas paduan suara. 31 siswa yang mengikuti kelas paduan suara adalah perempuan. Di antara proporsi berikut yang digunakan untuk menentukan x, yakni persentase siswa laki-laki yang mengikuti kelas paduan suara adalah ....

Diketahui :

Total = 42 siswa

Perempuan = 31 siswa

Persentase siswa laki-laki = x

Ditanya :

Proporsi yang digunakan untuk menentukan x ?

Dijawab :

Jumlah siswa laki-laki yang mengikuti paduan suara = 42 - 31 = 11 orang

Persentase siswa laki-laki (11 orang) = x

Persentase total siswa (42 orang) = 100

Maka perbandingan senilainya adalah :

[tex]\frac{siswa\:laki-laki}{jumlah\:siswa} = \frac{persentase\:laki-laki}{persentase\:total\:siswa}[/tex]

[tex]\frac{11}{42} = \frac{x}{100}[/tex] (D)


2. Rasio waktu yang diluangkan Karina untuk mengerjakan tugas Matematika terhadap tugas IPA adalah 5 banding 4. Jika dia meluangkan 40 menit untuk menyelesaikan tugas Matematika, maka waktu yang dia luangkan untuk menyelesaikan tugas IPA adalah ...


a. 20 menit c. 60 menit


b. 32 menit d. 90 menit

Diketahui :

Rasio Mat : IPA = 5 : 4

Mat = 40 menit

Ditanya :

Waktu untuk menyelesaikan Tugas IPA ?

Dijawab :

Mat : IPA

40 : IPA = 5 : 4

[tex]\frac{40}{IPA} = \frac{5}{4}[/tex]

40 x 4 = 5 x IPA

160 = 5 IPA

IPA = 160 : 5

IPA = 32 menit (B)


3. Sebuah mesin di suatu pabrik minuman mampu memasang tutup botol untuk 14 botol dalam waktu 84 detik. Banyak botol yang dapat ditutup oleh mesin dalam waktu 2 menit adalah ...


a. 16 botol c. 28 cm


b. 20 botol d. 35 cm

Diketahui :

14 botol dalam 84 detik

Ditanya :

Tutup botol yang dapat dipasang dalam waktu 2 menit ?

Dijawab :

2 menit = 2 x 60 = 120 detik

Maka kita gunakan perbandingan senilai :

[tex]\frac{84}{120} = \frac{14}{x}[/tex]

84x = 120 x 14

84x = 1.680

x = 1.680 : 84 = 20 botol (B)


4. Pak Chandra membeli kapal motor. Jika kapal motor yang beliau miliki dikendarai dengan kecepatan 32 km per jam dan menempuh jarak 80 km, kapal motor tersebut membutuhkan 24 liter solar. Pada kecepatan yang sama, solar yang dibutuhkan Pak Chandra untuk menempuh perjalanan sejauh 120 km adalah ... liter.

a. 7 1/2              c. 12


b. 9                    d. 20

Diketahui :

v = 32km/jam

s1 = 80km

solar = 24liter

Ditanya :

Solar yang dibutuhkan untuk perjalanan sejauh 120km?

Dijawab :

80km = 24liter

120km = n liter

Maka kita gunakan perbandingan senilai

[tex]\frac{80}{120} = \frac{24}{n}[/tex]

80n = 120 x 24

80n = 2.880

n = 2.880 : 80 = 36 liter (Tidak ada di pilihan ganda)


Pelajari lebih lanjut :

Soal tentang perbandingan senilai :

1. https://brainly.co.id/tugas/21119397

2. https://brainly.co.id/tugas/21169049

==========================

Detail Jawaban :

Kelas : VI

Mapel : Matematika

Bab : Bab 9 - Perbandingan senilai dan berbalik nilai

Kode : 6.2.9


Kata Kunci : Uji kompetensi 5, perbandingan



18. Kunci jawaban Matematika Kelas 7 semester 2 Hal. 39 Uji kompetensi 5.4


Kunci jawaban Matematika Kelas 7 semester 2 Hal. 39 Uji kompetensi 5.4

Ayo kita berlatih 5.4 mtk kelas 7 semester 2, merupakan materi Perbandingan yang terdapat pada buku paket Matematika kealas 7 semester 2 K-2013 revisi 2016 halaman 39 - 40 . Saya akan menjawab sebanyak 5 dari 10 soal dan soal bisa dilihat pada lampiran I.

Skala merupakan perbandingan antara ukuran jarak (panjang) gambar dengan jarak (panjang) sebenarnya.

Rumus :

Skala = jarak peta : jarak sebenarnya

Luas sebenarnya = luas peta × k²      (k merupakan perbandingan skala)

Pembahasan

No 1.

Sebuah peta berskala 1 : 10.000.000.  Jarak kota palembang dan jambi = 2,4 cm.  Berangkat dari kota jambi ke palembang dengan kecepatan rata-rata = 80km/jam.  Dalam perjalanan beristirahat sebanyak 1 kali selama 30 menit.  tiba di kota Palembang 10.30 WIB.

a. Berapa jam bis itu diperjalanan?b. Pukul brp sopir bis brgkt dari kota Jambi?

Jawab :

jarak sebenarnya = jarak peta : (1/k)

                             = 2,4 cm : 1/10.000.000

                            = 2,4 cm × 10.000.000

                            = 24.000.000 cm

                            = 240 km

a. waktu = jarak : kecepatan

              = 240 km : 80 km/jam

             = 3 jam

  Lama perjalanan = waktu tempuh + lama istirahat

                               = 3 jam + 30 menit

                               = 3 ¹/₂ jam

                               = 3 jam 30 menit

Jadi lama bis itu diperjalanan adalah 3 ¹/₂ jam

b. berangkat = pk tiba - lama

                    = 10.30 - 03.30

                    = pk 07.00

Jadi sopir bis itu berangkat dari kota Jambi pukul 07.00

No 2. https://brainly.co.id/tugas/1321139

No. 3

Disamping rumah Reza, terdapat sebidang tanah berbentuk persegi panjang. Ayahnya merencanakan akan menanami berbagai jenis tanaman obat. Keliling tanah 40 m, dan perbandingan ukuran panjang dan lebarnya adalah 5 : 3. Gambarlah keadaan tanah itu dan tentukan panjang dan lebarnya.

Jawab : 

K = 2 (p + l)

40 = 2 (5x + 3x)

40 = 2 × 8x

8x = 40 / 2

8x = 20

 x = 20 / 8

 x = 2,5

panajng = 5x = 5 (2,5) = 12,5 m

lebar = 3x = 3 (2,5) = 7,5 m

Jadi panjang dan lebar tanah adalah 12,5 m dan 7,5 m

Gambar keadaan tanah bisa dilihat pada lampiran II

No 4.

Ikhsan memiliki 3 orang anak. Pada suatu hari ketiga anaknya terkena flu burung. Sampai di rumah sakit diperoleh data bahwa suhu badan ketiga anak itu masing-masing, 40°C, 39,5°C, dan 40,6°C. Ubahlah ketiga suhu badan itu dalam derajat Reamur dan Fahrenheit.

Jawab :

Untuk perbandingan konversi suhu bisa dilihat pada lampiran III

40° C

R = 4/5 × 40° = 32° R

F = (9/5 × 40°) + 32°

  = 72 + 32 = 104° F

39,5° C

R = 4/5 × 39,5 = 31,6° R

F = (9/5 × 39,5) + 32

  = 71,1 + 32 = 103,1° F

40,6 ° C

R = 4/5 × 40,6 = 32,48° R

F = (9/5 × 40,6) + 32

  = 73,08 + 32 = 105,08° F

No 5.

Jarak kota A dan B pada peta adalah 5 cm. Peta itu berskala 1 : 1.200.000. Amir dengan mengendarai sepeda motor berangkat dari kota A pukul 06.45 dengan kecepatan 45 km per jam. Di tengah jalan Amir berhenti selama 14 jam. Pada pukul berapa Amir tiba di kota B?

Jawab :

jarak sebenarnya = jarak peta : (1/k)

                             = 5 cm : 1/1.200.000

                            = 5 cm × 1.200.000

                            = 6.000.000 cm

                            = 60 km

waktu = jarak sebenarnya : kecepatan

          = 60 km : 45 km/jam

          = 1  jam

         = 1 ¹/₃ jam

         = 1 jam + (¹/₃ × 60 menit)

         = 1 jam 20 menit

Amir tiba = berangkat + waktu mengendarai + berhenti

Amir tba =   06.45

                    01.20

                    14.00

                    --------- +

                     21.65  →   22.05

Jadi Amir tiba dikota B pada pukul 22.05

No 6.

Jumlah suhu badan Robert dan Dodi 133,2°F. Saat itu Robert dalam keadaan flu sehingga suhu badannya 39°C. Berapa derajat celcius suhu badan Dodi?

Jawab :

Robert + Dodi = 133,2° F

C = 5/9 × (°F - 32)

   = 5/9 × (133,2° - 32)

   = 5/9 × 101,2

   = 56,22° C

Robert + Dodi = 56,22° C

39° C + Dodi = 56,22° C

            Dodi = 56,22° C - 39° C

                     = 17,22° C

Jadi suhu badan Dodi adalah 17,22° C

No 9. https://brainly.co.id/tugas/8945298


Pelajari lebih lanjut tentang PerbandinganDenah sebidang tanah dibuat dengan menggunakan skala 1 : 200.  a. Jika luas pada denah 48 cm², berapa luas tanah sebenarnya? → brainly.co.id/tugas/13843109Panjang dan lebar sebuah rumah adalah 25 m dan 15 m. Jika digambar dengan skala 1 : 200 maka panjang dan lebar rumah → brainly.co.id/tugas/7191140Setelah berputar 18 kali, roda sepeda menempuh jarak sejauh 27 meter. Jika roda tersebut berputar 12 kali, jarak yang ditempuh → brainly.co.id/tugas/2056378Perbandingan umur edi dengan umur ayah adalah 2 : 6. jika umur ayah 42 tahun → brainly.co.id/tugas/7514553Detil JawabanKelas         : 7 SMPMapel        : MatematikaBab            : 5 - PerbandinganKode          : 7.2.5  Kata kunci : perbandingan, skala, jarak sebenarnya, luas peta, konversi suhu, kecepatan, waktu, berangkat, tiba

Semoga bermanfaat


19. bantuin dongg jawab soal matematika uji kompetensi 4 kelas 8 semester 2 hal.153 paket


1.13x9x8=
936
936:6
=156
Jadi untuk no 1 jawabanya 156 semoga berhasil

20. matematika kelas 8 semester 2 uji kompetensi 6 (nomor 20)​


Jawaban:

c. 90 cm²

Penjelasan dengan langkah-langkah:

semoga membantu


21. Uji kompetensi 9 uraian no.7 poin b matematika kelas 7 semester 2Tolong ya, buat dikumpulin besok nii​


Buatlah diagram lingkaran dari data tersebut! Terlampir

Pembahasan

Penyajian data yang dikenal dalam ilmu Statistika ada beberapa bentuk. Bentuk-bentuk tersebut adalah berupa tabel dan diagram/grafik (diagram batang, diagram garis, diagram lingkaran, dan masih banyak lagi). Berdasarkan soal tersebut, kita diminta untuk menyajikan data yang ada dalam tabel ke dalam bentuk diagram lingkaran. Diagram lingkaran yang diminta dalam soal akan disajikan terpisah antara siswa laki-laki dan perempuan. Sebelum membuat diagram tersebut, kita perlu menghitung persentase siswa laki-laki/perempuan tiap jenjang pendidikan.

Total siswa laki-laki = 2250 + 1750 + 1550 + 1250 = 6800

Persentase siswa laki-laki

SD =  2250/6800 x 100% = 33,1 %

SMP = 1750/6800 x 100% = 25,7%

SMA = 1550/6800 x 100% = 22,8%

SMK = 1250/6800 x 100% = 18,4 %

Total siswa perempuan = 2300 + 2200 + 1700 + 1400 = 7600

Persentase siswa perempuan

SD =  2300/7600 x 100% = 30,3 %

SMP = 2200/7600 x 100% = 28,9%

SMA = 1700/7600 x 100% = 22,4%

SMK = 1400/7600 x 100% = 18,4 %

Pelajari lebih lanjutPenyajian data - https://brainly.co.id/tugas/175650

-----------------------------

Detil Jawaban

Kelas: VII SMP

Mapel: Matematika

Bab: 9 - Statistika

Kode: 7.2.9

Kata Kunci: Penyajian, Data, Diagram, Lingkaran


22. Tolong dijawab kakuji kompetensi 5 matematika kelas 7 semester 2nomer 2, 3 dan 4 soal uraian​dikumpulin besok plisss


Jawab:.

Penjelasan dengan langkah-langkah:


23. Matematika uji kompetensi 7 kelas 9 semester 2


Kategori soal : matematika - peluang
Kelas : 9 SMP
Pembahasan : soal dan jawaban terlampir

24. cara mtk kelas 7 semester 2 uji kompetensi 8


Kelas 7 semester 2 uji kompetensi 8. Soal yang disajikan (dilampirkan) adalah soal nomor 1 sampai 4, tentang bangun datar segiempat. Jenis-jenis bangun datar segiemapt beserta luasnya:

Persegi ⇒ Luas = sisi × sisi Persegi panjang ⇒ Luas = panjang × lebar Jajar genjang ⇒ Luas = alas × tinggi Trapesium ⇒ Luas = ½ × jumlah sisi yang sejajar × tinggi Belah ketupat ⇒ Luas = ½ × diagonal 1 × diagonal 2 Layang layang ⇒ Luas = ½ × diagonal 1 × diagonal 2

Pembahasan

1) Jika suatu persegi memiliki luas 144 cm², maka panjang sisinya sama dengan ... mm

Jawab

Luas persegi = 144 cm²

s² = 144 cm²

s = √(144 cm²)

s = 12 cm

s = 120 mm

Jawaban C

2) Aisyah memiliki sebuah kain yang berbentuk persegi panjang. Ia berencana menghias sekeliling kain dengan renda. Jika ternyata renda yang diperlukan Aisyah paling sedikit 450 cm, salah satu ukuran kain yang dimiliki Aisyah adalah ....

Jawab

Dilihat dari option salah satu sisinya adalah 125 cm (kita anggap sebagai panjang), maka

Keliling kain = 450 cm

2(p + l) = 450 cm

(p + l) = 450 cm ÷ 2

125 cm + l = 225 cm

l = 225 cm - 125 cm

l = 100 cm

Jadi ukuran taplak tersebut adalah (125 cm × 100 cm)

Jawaban A

3) Ukuran diagonal-diagonbal suatu layang-layang yang memiliki luas 640 cm² adalah ....

Jawab

A. 22 × 30

memiliki luas = ½ × 22 cm × 30 cm = 330 cm² (jawaban salah)

B. 32 × 40

memiliki luas = ½ × 32 cm × 40 cm = 640 cm² (jawaban benar)

Jadi ukuran diagonal-diagonal layang-layang tersebut adalah 32 × 40

Jawaban B

4) Perhatikan gambar persegi panjang dan persegi berikut. Jika luas persegi panjang = ½ kali luas persegi, lebar persegi panjang tersebut adalah ...

Jawab

Luas persegi panjang = ½ × luas persegi

p × l = ½ × s²

8,5 cm × l = ½ × 8,5 cm × 8,5 cm

l = ½ × 8,5 cm

l = 4,25 cm

Jawaban B

Pelajari lebih lanjut  

Contoh soal lain tentang  

Luas Trapesium: https://brainly.co.id/tugas/2399779 Luas Segitiga: https://brainly.co.id/tugas/15098905 Luas Huruf H: https://brainly.co.id/tugas/21149680

------------------------------------------------

Detil Jawaban    

Kelas : 7

Mapel : Matematika  

Kategori : Segitiga dan Segiempat

Kode : 7.2.4

Kata Kunci : Kelas 7 semester 2 uji kompetensi 8


25. jawaban uji kompetensi 6 matematika kelas 8 semester 2 hal 45


Jawaban uji kompetensi 6 matematika kelas 8 semester 2 hal 45

Teorama Pythagoras adalah rumus untuk mencari sisi-sisi pada segitiga siku-siku

Bunyi Teorema Pythagoras adalah Kuadrat sisi miring sama dengan jumlah kuadrat kedua sisi penyikunya

Sisi miring / Hipotenusa biasanya sisi yang terpanjang diantara sisi-sisi lainnya

Pembahasan :

1. Diketahui segitiga KLM dengan panjang sisi-sisinya k, l, dan m.

Pernyataan berikut yang benar dari segitiga KLM adalah ....

a. Jika m² = l² + k², besar ∠K = 90°

b. Jika m² = l² − k², besar ∠M = 90°

c. Jika m² = k² − l², besar ∠L = 90°

d. Jika k² = l² + m², besar ∠K = 90° (Benar)

Diketahui :

Segitiga KLM dengan panjang sisi k, l dan m

Ditanya :

Pernyataan yang benar ?

Dijawab :

Lihat gambar ilustrasi

a. Jika m² = l² + k², besar ∠K = 90°

Apabila ∠K = 90° maka sisi miring adalah sisi k

maka menurut Rumus Pythagoras :

k² = l² + m² (Pernyataan salah)

b. Jika m² = l² − k², besar ∠M = 90°

Apabila ∠M = 90° maka sisi miring adalah sisi m

maka menurut Rumus Pythagoras :

m² = k² + l² (Pernyataan salah)

c. Jika m² = k² − l², besar ∠L = 90°

Apabila ∠L = 90° maka sisi miring adalah sisi l

maka menurut Rumus Pythagoras :

l² = k² + m² (Pernyataan salah)

D. Jika k² = l² + m², besar ∠K = 90°

Apabila ∠K = 90° maka sisi miring adalah sisi k

maka menurut Rumus Pythagoras :

k² = l² + m² (Pernyataan benar)


2. Perhatikan gambar berikut. Panjang sisi PQ = ... cm.

a. 10      c. 13

b. 12      d. 14

Diketahui :

PR = 26cm

QR = 24cm

Ditanya :

PQ ?

Dijawab :

PQ² + QR² = PR²

PQ² + 24² = 26²

PQ² + 576 = 676

PQ² = 676 - 576

PQ = √100 = 10 cm (A)


3. Diketahui kelompok tiga bilangan berikut.

(i) 3, 4, 5          (iii) 7, 24, 25

(ii) 5, 13, 14      (iv) 20, 21, 29

Kelompok bilangan di atas yang merupakan tripel Pythagoras adalah ....

a. (i), (ii), dan (iii)          c. (ii) dan (iv)

b. (i) dan (iii)                  d. (i), (ii), (iii), dan (iv)

Diketahui :

kelompok tiga bilangan berikut.

(i) 3, 4, 5         (iii) 7, 24, 25

(ii) 5, 13, 14     (iv) 20, 21, 29

Ditanya :

Kelompok bilangan diatas yang merupakan Triple Pythagoras ?

Dijawab :

(i) 3, 4, 5    

sisi miring = 5

5² = 3² + 4²

25 = 9 + 16

25 = 25 (Terbukti)    

(ii) 5, 13, 14  

Sisi miring = 14

14² = 5² + 13²

196 = 25 + 169

196 ≠ 194 (Tidak terbukti)

(iii) 7, 24, 25

Sisi miring = 25

25² = 7² + 24²

625 = 49 + 576

625 = 625 (Terbukti)

(iv) 20, 21, 29

Sisi miring = 29

29² = 20² + 21²

841 = 400 + 441

841 = 841 (Terbukti)

Jadi yang merupakan triple pythagoras adalah (i), (III) dan (iv) (B)


4. (i) 3 cm, 5 cm, 6 cm       (iii) 16 cm, 24 cm, 32 cm  

(ii) 5 cm, 12 cm, 13 cm       (iv) 20 cm, 30 cm, 34 cm

Ukuran sisi yang membentuk segitiga lancip ditunjukkan oleh ....

a. (i) dan (ii)         c. (ii) dan (iii)

b. (i) dan (iii)        d. (iii) dan (iv)

Diketahui :

(i) 3 cm, 5 cm, 6 cm          (iii) 16 cm, 24 cm, 32 cm  

(ii) 5 cm, 12 cm, 13 cm       (iv) 20 cm, 30 cm, 34 cm

Ditanya :

Ukuran sisi yang merupakan segitiga lancip adalah ?

Dijawab :

Persamaan sisi segitiga :

c = sisi miring

c² > a² + b² (Segitiga tumpul)

c² = a² + b² (Segitiga siku-siku)

c² < a² + b² (Segitiga lancip)

(i).   3 cm , 5 cm, 6 cm

c = 6cm

6² > 3² + 5²

36 > 9 + 25

36 > 34  

segitiga tumpul, karena c² > a² + b²

(ii).  5 cm , 12 cm, 13 cm

c = 13cm

13²  = 5² + 12²

169 = 25 + 144

169 = 169

Segitiga siku-siku, karena c² = a² + b²

(iii).  16 cm , 24 cm, 32 cm

c = 32cm

32² > 16² + 24²

1024 > 256 + 576

1024 > 832

Segitiga tumpul, karena c² > a² + b²

(iv).  20 cm , 30 cm, 34 cm

c = 34cm

34² < 20² + 30²

1156 < 400 + 900

1156 < 1300

Segitiga lancip, karena c² < a² + b²

Yang merupakan segitiga lancip adalah (iv) (Tidak ada jawaban)


Pelajari lebih lanjut :

Soal tentang Teorema Pythagoras :

1. brainly.co.id/tugas/21164772

2. brainly.co.id/tugas/21043142

3. brainly.co.id/tugas/21094843

==========================

Detail Jawaban :

Kelas : VIII

Mapel : Matematika

Bab : Bab 4 - Teorema Pythagoras

Kode : 8.2.4


Kata kunci : Uji kompetensi 6, kelas 8 semester 2, hal 45, teori Pythagoras



26. jawaban matematika uji kompetensi 6 kelas 8 semester 2 hal 46​


Jawaban matematika uji kompetensi 6 kelas 8 semester 2 hal 46. Soal yang disajikan untuk halaman 46 adalah soal nomor 5, 6 dan 7, yaitu tentang jarak antara dua titik. Rumus jarak antara titik (x₁, y₁) dan (x₂, y₂) adalah [tex]\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}[/tex].

Pada segitiga siku-siku dengan sisi miringnya (sisi terpanjang) adalah c dan dua sisi lainnya adalah a dan b, maka berlaku rumus:

c² = a² + b²

Pembahasan

5. Diketahui

Layang-layang KLMN dengan koordinat

K(–5 , 0) L(0, 12) M(16, 0) N(0, –12)

Ditanyakan

Keliling layang-layang KLMN

Jawaban

Layang-layang memiliki 2 pasang sisi yang sama panjang, sehingga kelilingnya adalah

K = 2(a + b)

Panjang sisi KL

= [tex]\sqrt{(x_{L} - x_{K})^{2} + (y_{L} - y_{K})^{2}}[/tex]

= [tex]\sqrt{(0 - (-5))^{2} + (12 - 0)^{2}}[/tex]

= [tex]\sqrt{5^{2} + 12^{2}}[/tex]

= [tex]\sqrt{25 + 144}[/tex]

= [tex]\sqrt{169}[/tex]

= 13

Panjang sisi LM

= [tex]\sqrt{(x_{M} - x_{L})^{2} + (y_{M} - y_{L})^{2}}[/tex]

= [tex]\sqrt{(16 - 0)^{2} + (0 - 12)^{2}}[/tex]

= [tex]\sqrt{16^{2} + (-12)^{2}}[/tex]

= [tex]\sqrt{256 + 144}[/tex]

= [tex]\sqrt{400}[/tex]

= 20

Jadi keliling layang-layang KLMN adalah

= 2(KL + LM)

= 2(13 + 20) satuan

= 2(33) satuan

= 66 satuan

Jawaban C

6. Diketahui

Panjang sisi siku-siku pada segitiga siku-siku PQR adalah

4 dm 6 dm

Ditanyakan

Panjang hipotenusanya = …. ?

Jawab

Panjang hipotenusa (sisi miringnya) adalah

= [tex]\sqrt{4^{2} + 6^{2}}[/tex] dm

= [tex]\sqrt{16 + 36}[/tex] dm

= [tex]\sqrt{52}[/tex] dm

= [tex]\sqrt{4 \times 13}[/tex] dm

= [tex]2\sqrt{13}[/tex] dm

Jawaban C

7. Bangunan yang berjarak √40 adalah:

A. Taman Kota (–6, 0) dan Stadion (–2, 3), berjarak:

= [tex]\sqrt{(-2 - (-6))^{2} + (3 - 0)^{2}}[/tex]

= [tex]\sqrt{4^{2} + 3^{2}}[/tex]

= [tex]\sqrt{16 + 9}[/tex]

= [tex]\sqrt{25}[/tex]

= 5

B. Pusat Kota (0, 0) dan Museum (6, 1), berjarak

= [tex]\sqrt{(6 - 0)^{2} + (1 - 0)^{2}}[/tex]

= [tex]\sqrt{6^{2} + 1^{2}}[/tex]

= [tex]\sqrt{36 + 1}[/tex]

= [tex]\sqrt{37}[/tex]

C. Rumah sakit (–6, –4) dan Museum (6, 1), berjarak

= [tex]\sqrt{(6 - (-6))^{2} + (1 - (-4))^{2}}[/tex]

= [tex]\sqrt{12^{2} + 5^{2}}[/tex]

= [tex]\sqrt{144 + 25}[/tex]

= [tex]\sqrt{169}[/tex]

= 13

D. Penampungan hewan (6, –2) dan Kantor polisi (0, –4), berjarak

= [tex]\sqrt{(0 - 6)^{2} + (-4 - (-2))^{2}}[/tex]

= [tex]\sqrt{(-6)^{2} + (-2)^{2}}[/tex]

= [tex]\sqrt{36 + 4}[/tex]

= [tex]\sqrt{40}[/tex]

Jadi bangunan yang berjarak √40 adalah Penampungan hewan dan Kantor polisi

(Jawaban D)

Pelajari lebih lanjut  

Contoh soal lain tentang teorema pythagoras

Hubungan sisi pada segitiga siku-siku: https://brainly.co.id/tugas/14660375 Jarak antara dua kapal: https://brainly.co.id/tugas/15504720 Menentukan panjang sisi segitiga siku-siku: https://brainly.co.id/tugas/259167

------------------------------------------------

Detil Jawaban  

Kelas : 8

Mapel : Matematika  

Kategori : Teorema Pythagoras

Kode : 8.2.4


27. Kunci jawaban mtk uji kompetensi 6 kelas 7 semester 2


Kunci jawaban mtk uji kompetensi 6 kelas 7 semester 2 (Pilihan Ganda)

Saya akan menjawab soal ini dari nomor 1 - 8

Rumus :

Untung / rugi = Pendapatan - Modal

Untung / rugi = [tex]\frac{persentase\:untung\:atau\:rugi}{100}[/tex] x Modal

Kondisi untung apabila pendapatan lebih besar dari modal

Kondisi rugi apabila pendapatan lebih kecil dari modal (negatif)

Pembahasan :

1. Tentukan kondisi berikut yang manakah yang menunjukkan kondisi rugi?

Pemasukkan     Pengeluaran

       (Rp)                     (Rp)

a.  700.000           900.000

b. 1.100.000          1.100.000

c. 2.100.000         2.000.000

d. 1.650.000          1.550.000

Untuk menjawab soal ini, maka kita harus tahu dahulu kalau keadaan yang menunjukkan kondisi rugi adalah keadaan dimana pemasukkan lebih kecil daripada pengeluaran

a. Pemasukkan = 700.000          

Pengeluaran = 900.000

Kondisi ini adalah kondisi rugi, karena pengeluaran lebih besar daripada pemasukkan

Rugi = 900.000 - 700.000 = 200.000

b. Pemasukkan = 1.100.000          

Pengeluaran = 1.100.000

Apabila kondisi pemasukkan = pengeluaran maka kondisi ini dinamakan kondisi impas

c. Pemasukkan = 2.100.000        

Pengeluaran = 2.000.000

Pada kondisi ini pemasukkan lebih besar daripada pengeluaran, maka disebut kondisi untung

Untung = 2.100.000 - 2.000.000 = 100.000

d. Pemasukkan = 1.650.000          

Pengeluaran = 1.550.000

Kondisi ini dinamakan kondisi untung, karena pemasukkan lebih besar daripaad pengeluaran

Untung = 1.650.000 - 1.550.000 = 100.000

2. Seorang pedagang mengeluarkan Rp 1.500.000 untuk menjalankan usahanya. Jika pada hari itu dia mendapatkan keuntungan sebesar 10%. Maka besarnya pendapatan yang didapatkan pada hari itu adalah...

a. Rp 1.650.000          c. Rp 1.400.000

b. Rp 1.600.000          d. Rp 1.350.000

Diketahui :

Modal Rp 1.500.000

Untung = 10%

Ditanya :

Pendapatan ?

Dijawab :

Untung = [tex]\frac{10}{100}[/tex] x Rp 1.500.000 = Rp 150.000

Pendapatan = Rp 1.500.000 + Rp 150.000 = Rp 1.650.000 (A)

3. Pak Dedi membeli suatu sepeda motor bekas dengan harga Rp 5.000.000. Dalam waktu 1 minggu motor tersebut dijual kembali dengan harga 110% dari harga belinya. Tentukan keuntungan Pak Dedi?

a. Rp 500.000             c. Rp 4.500.000

b. Rp 1.000.000           d. Rp 5.500.000

Diketahui :

Modal Rp 5.000.000

Dijual kembali 110% dari harga beli

Ditanya :

Keuntungan Pak Dedi ?

Dijawab :

Harga jual = [tex]\frac{110}{100}[/tex] x Rp 5.000.000 = Rp 5.500.000

Karena harga jual lebih tinggi dari harga beli, maka kondisinya adalah untung

Keuntungan Pak Dedi = Rp 5.500.000 - Rp 5.000.000 = Rp 500.000 (A)

4. Pak Candra membeli suatu sepeda bekas dengan harga Rp 500.000. Dalam waktu 1 minggu sepeda tersebut dijual kembali dengan harga 110% dari harga beli. Tentukan keuntungan Pak Candra?

a. Rp 550.000              c. Rp 50.000

b. Rp 100.000               d. Rp 25.000

Diketahui :

Modal Rp 500.000

Harga jual 110% dari harga beli

Ditanya :

Keuntungan Pak Candra ?

Dijawab :

Harga jual = [tex]\frac{110}{100}[/tex] x Rp 500.000 = Rp 550.000

Karena harga jual lebih tinggi dari harga beli, maka kondisinya adalah untung

Keuntungan Pak Candra = Rp 550.000 - Rp 500.000 = Rp 50.000 (C)

5. Pak Edi membeli mobil dengan harga Rp 160.000.000. Setelah 6 bulan dipakai Pak Edi menjual mobil tersebut dengan harga Rp 140.000.000. Tentukan taksiran terdekat persentase kerugian yang ditanggung Pak Edi?

a. 20%          c. 15%

b. 18%           d. 12%

Diketahui :

Harga beli = Rp 160.000.000

Harga jual = Rp 140.000.000

Ditanya :

Taksiran persentase kerugian Pak Edi ?

Dijawab :

Karena harga beli lebih tinggi daripada harga jual, maka kondisi ini adalah kondisi rugi. Pertama-tama kita cari dahulu kerugian yang dialami

Rugi = Rp 160.000.000 - Rp 140.000.000 = Rp 20.000.000

Persentase kerugian = [tex]\frac{20.000.000}{160.000.000}[/tex] x 100% = 12,5%

Taksiran terdekat adalah 12% (D)

6. Pak Fandi membeli sepetak tanah dengan harga Rp 40.000.000 1 tahun kemudian, Pak Dedi menjual tanah tersebut dengan keuntungan 16%. Tentukan taksiran terdekat harga jual tanah milik Pak Fandi?

a. Rp 6.400.000 c. Rp 46.400.000

b. Rp 33.600.000 d. Rp 56.000.000

Diketahui :

Harga beli = Rp 40.000.000

untung = 16%

Ditanya :

Taksiran terdekat harga jual ?

Dijawab :

untung = [tex]\frac{16}{100}[/tex] x Rp 40.000.000 = Rp 6.400.000

Harga jual tanah = Rp 40.000.000 + Rp 6.400.000 = Rp 46.400.000 (C)

Pelajari lebih lanjut :

Soal-soal tentang Aritmatika sosial :

1. https://brainly.co.id/tugas/21432898

2. https://brainly.co.id/tugas/21335926

3. https://brainly.co.id/tugas/21318766

======================

Detail Jawaban :

Kelas : VII

Mapel : Matematika

Bab : Bab 7 - Aritmatika sosial

Kode : 7.2.7

Kata Kunci : untung, rugi, uji kompetensi 6, kelas 7 semester 2


28. matematika kelas 11 semester 1 uji kompetensi 1.2​


Jawaban:

Mana gambarnya setiap sekolah beda beda mas


29. uji kompetensi no 5 matematika kelas 7 semester 1 kurikulum 2013


1/3 × 24 = 24/3 = 8
2/8 × 24 = 48/8 = 6
8 - 6 = 2
selisih novel mereka = 2

30. Jawaban matematika kelas 8 semester 2 kurikulum 2013 uji kompetensi 7 essay


Jawaban matematika kelas 8 semester 2 kurikulum 2013 uji kompetensi 7 essay

Lingkaran adalah bangun dua dimensi yang hanya memiliki satu sisi dan tidak memiliki titik sudut. Jarak antara titik pusat lingkaran dengan satu titik pada sisi lingkaran disebut jari-jari. Garis tengah lingkaran yang panjangnya dua kali jari-jari disebut diameter. Luas dan keliling lingkaran dapat dirumuskan sebagai berikut.

L = π r²K = 2 π r

dengan

L = luas lingkaran

K = keliling lingkaran

r = jari-jari lingkaran

π = 3,14 atau 22/7

Panjang diameter sama dengan dua kali panjang jari-jari. Secara sistematis, pernyataan tersebut dapat dirumuskan sebagai berikut.

d = 2r

dengan

d = diameter

Pembahasan

1. Perhatikan gambar nomor 1 di attachment!

Diketahui

Jari-jari lingkaran r = 26 cm

Panjang EG = 10 cm

Ditanya

a. Panjang AC

b. Panjang DE

Penyelesaian

Untuk menghitung panajng AC, terlebih dahulu kita harus menghitung panjang DE. DE dapat dihitung dengan menggunakan rumus Phytagoras.

DE² = DG² - EG²

DE² = 26² - 10²

DE² = 676 - 100

DE² = 576

DE = √576

DE = 24 cm

a. Panjang AC

= Panjang DF

= 2 (Panjang DE)

= 2 (24)

= 48 cm

b. Panjang DE

= 24 cm

Kesimpulan

Jadi, panjang AC = 48 cm dan panjang DE = 24 cm.

2. Perhatikan gambar nomor 2 di attachment!

Diketahui

Jari-jari lingkaran r = 14 cm

Perhatikan gambar pada soal!

Ditanya

Luar daerah arsir

Penyelesaian

Luas setengah lingkaran kecil yang menonjol akan penuh jika digunakan untuk menutup area setengah lingkaran kecil yang kosong, sehingga luas arsir sama dengan luas setengah lingkaran besar.

Luas arsir

= luas setengah lingkaran besar

= 1/2 × π r²

= 1/2 × 22/7 × 14 × 14

= 22 × 14

= 308 cm²

Kesimpulan

Jadi, luas daerah yang diarsir adalah 308 cm².

3. Perhatikan gambar nomor 3 pada soal dan di attachment!

Diketahui

Panjang sisi persegi s = 10

Jari-jari lingkaran = 5 cm

Ditanya

Keliling dan luas daerah arsir

Penyelesaian

Menghitung keliling daerah arsir

Untuk menghitung keliling, perhatikan gambar pada soal!

Keliling daerah arsir bangun tersebut adalah panjang sisi yang membentuk daerah arsir.

Keliling daerah arsir

= 4 (5) + + keliling lingkaran

= 20 + 2 π r

= 30 + 2 × 3,14 × 5

= 30 + 31,4

= 61,4 cm

Menghitung luas daerah arsir

Perhatikan gambar di attachment!

Luas daerah arsir

= luas persegi + luas setengah lingkaran

= s × s + 1/2 π r²

= 10 × 10 + 1/2 (3,14) (5)²

= 100 + 12,5 (3,14)

= 100 + 39,25

= 139,25 cm²

Kesimpulan

Jadi, keliling dan luas daerah arsir tersebut berturut-turut adalah 61,4 cm dan 139,25 cm².

4. Perhatikan gambar di attachment!

Diketahui

Jari-jari lingkaran r = 21 cm

Sudut AOB = 90°

Ditanya

Luas tembereng (daerah arsir)

Penyelesaian

Untuk menentukan luas tembereng, terlebih dahulu kita menentukan luas juring dan luas segitiga AOB.

Luas juring AOB

= 90°/360° × Luas lingkaran

= 1/4 × π r²

= 1/4 × 22/7 × 21 × 21

= 1/4 × 66 × 21

= 346,5 cm²

Luas segitiga AOB

= 1/2 × r × r

= 1/2 × 21 × 21

= 220,5 cm²

Luas tembereng (daerah arsir)

= Luas juring AOB - Luas segitiga AOB

= 346,5 - 220,5

= 126 cm²

Kesimpulan

Jadi, luas daerah arsir adalah 126 cm².

Pelajari lebih  lanjut

1. Menentukan panjang apotema: https://brainly.co.id/tugas/73842

2. Menentukan panjang tali minimal untuk mengikat beberapa kaleng: https://brainly.co.id/tugas/21608097

Detail jawaban

Kelas: 8

Mapel: Matematika

Bab: Lingkaran

Kode: 8.2.7

Kata kunci: keliling, lingkaran, luas, arsir, campuran, bangun, persegi, Phytagoras, tembereng, juring


31. jawaban uji kompetensi 7 matematika kelas 8 semester 2 PG


Jawaban Uji Kompetensi 7 Matematika Kelas 8 Semester 2 PG

Jawaban Pendahuluan

Soal matematika di atas merupakan materi dari lingkaran.

Pembahasan

Lingkaran adalah suatu geometri bidang atau bangun datar dimana terdapat kumpulan titik-titik yang mempunyai jarak yang bernilai sama atau tetap terhadap titik tunggal yang bersifat semu, sehingga titik-titik tersebut membentuk garis tertutup berupa lengkungan dalam satu putaran penuh secara berulang-ulang.

Pada suatu bidang lingkaran, terdapat jari-jari lingkaran (r) dan diameter lingkaran (d), sehingga bentuk persamaannya yaitu r = d/2 atau d = 2r. Rumus umum lingkaran adalah dengan menggunakan nilai konstanta pi/phi yang dinotasikan dalam π yang mempunyai nilai bilangan riil yang mendekati bilangan pecahan 22/7 dan bilangan desimal 3,14 sehingga ditulis menjadi π ≈ 22/7 ≈ 3,14.

Rumus menghitung keliling lingkaran

K = π ⋅ 2r

K = π ⋅ d

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

K busur = π ⋅ d  ⋅ (m∠ / 360° )

Rumus menghitung luas lingkaran

L = π ⋅ r ⋅ r = π ⋅ r²

L = π ⋅ d/2 ⋅ d/2 = π ⋅ d²/4

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

L juring = π ⋅ d²/4  ⋅ (m∠ / 360° )

Rumus untuk menghitung garis singgung persekutuan dua lingkaran adalah dengan menggunakan teorema Pythagoras, dimana j adalah garis singgung luar atau dalam lingkaran, p adalah jarak antara kedua titik pusat lingkaran, dan R dan r sebagai jari-jari lingkaran besar dan kecil.

Rumus garis singgung luar lingkaran

j² = p² - (R - r)²

Rumus garis singgung dalam lingkaran

j² = p² - (R + r)²

1.

Dik: Juring @ m∠ pusat = 90°, L = 78,5cm² (π = 3,14)

Dit: r=?

Jawab:

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

78,5cm² = 3,14 ⋅ r²  ⋅ (90°  / 360° )

100cm²  = r²

r = 10cm ... (pilihan A)

2.

Dik: Busur @ K = 22cm, m∠ pusat = 120° (π = 22/7)

Dit: r=?

Jawab:

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

22cm = 22/7 ⋅ 2r ⋅ (120° / 360° )

r = 10,5cm ... (pilihan tidak ada)

3.

Dik: Busur @ K = 16,5cm, d = 42cm (π = 22/7)

Dit: m∠ pusat=?

Jawab:

K busur = π ⋅ d ⋅ (m∠ / 360° )

16,5cm = 22/7 ⋅ 42cm ⋅ (m∠ / 360° )

m∠ = 45°  ... (pilihan A)

4.

Dik: Juring @ L = 57,75cm², m∠ pusat = 60°  (π = 22/7)

Dit: d=?

Jawab:

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

57,75cm² = 22/7 ⋅ r²  ⋅ (60°  / 360° )

110,25cm² = r²

r = 10,5cm  ... (pilihan B)

5.

Dik: Busur @ r = 21cm, m∠ pusat = 30°  (π = 22/7)

Dit: K=?

Jawab:

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

K busur = 22/7 ⋅ 2(21cm) ⋅ (30° / 360° )

K busur = 11cm  ... (pilihan A)

6.

Dik: Lingkaran O

Dit: m∠BAD=?

Jawab:

2 ⋅ Sudut keliling = Sudut pusat

2 ⋅ m∠BAD = 110°

m∠BAD = 55° ... (pilihan A)

7.

Dik: Lingkaran O

Dit: m∠AOB=?

Jawab:

m∠APB + m∠AQB + m∠ARB = 144°

3 ⋅ Sudut keliling = 144°

Sudut keliling = 48°

2 ⋅ Sudut keliling = Sudut pusat

2 ⋅ 48° = m∠AOB

m∠AOB = 96°  ... (pilihan tidak ada)

8.

Dik: Lingkaran @ d = 0,6m

Jarak = 10000km = 10000000m

Dit: Putaran=?

Jawab:

K lingkaran * putaran = jarak

π ⋅ d * n  = 10000000m

3,14 ⋅ 0,6m * n  = 10000000m

n ≈ 5000000  ... (pilihan D)

9.

Dik: Persegi @ s = 26cm

2 buah 1/4 lingkaran @ r = 14cm

Dit: K arsir=?

Jawab:

K = K persegi + K lingkaran

K = 4s + 2 ⋅ 1/4 ⋅ π ⋅ 2r

K = 4(26cm) + 1/2 ⋅ 22/7 ⋅ 2(14cm)

K = 158cm ... (pilihan C)

10.

Dik: Persegi @ s = 14cm

1/2 lingkaran @ d = 14cm, r = 7cm

Dit: L arsir=?

Jawab:

L = L persegi + L lingkaran

L = s²  + 1/2 ⋅ π ⋅ r²

L = (14cm)² + 1/2 ⋅ 22/7 ⋅ (7cm)²

L = 273cm² ... (pilihan C)

11.

Dik: Singgung luar

j = 12cm, rC = 7,5cm, rD = 4cm

Dit: p=?

Jawab:

p² = j² + (rC - rD)²

p² = (12cm)² + (7,5cm - 4cm)²

p = √156,25 cm²

p = 12,5cm ... (pilihan A)

12.

Dik: Singgung dalam

p = 7,5cm, rA = 2,5cm, rB = 2cm

Dit: j=?

Jawab:

j² = p² - (rA + rB)²

j² = (7,5cm)² - (2,5cm + 2cm)²

j = √36 cm²

j = 6cm ... (pilihan C)

13.

Dik: Singgung luar

R = 1,5cm, p = 2,5cm, j = 2,4cm

Dit: j=?

Jawab:

(R - r)² = p² -  j²

(1,5cm - r)²  = (2,5cm)² - (2,4cm)²

(1,5cm - r) ²  = 0,49cm²

1,5cm - r  = 0,7cm

r = 0,8cm ... (pilihan B)

14.

Dik: Singgung luar

R = 19cm, r = 10cm, j = 40cm

Dit: p=?

Jawab:

p² = j² + (R - r)²

p² = (40cm)² + (19cm - 10cm)²

p = √1681cm²

p = 41cm ... (pilihan A)

15.

Dik: Singgung luar

p = 17cm, j = 15cm

Dit: p=?

Jawab:

(R - r)² = p² -  j²

(R - r)²  = (17cm)² - (15cm)²

R - r = 8cm

R = 10cm dan r = 2cm ... (pilihan D)

16.

Dik: Singgung luar

p = 15cm, j = 12cm

Dit: p=?

Jawab:

(R - r)² = p² -  j²

(R - r)²  = (15cm)² - (12cm)²

R - r = 9cm

R = 12cm dan r = 3cm ... (pilihan B)

17.

Dik: Singgung luar

r1 = 13cm, p = 20cm, j = 16cm

Dit: r2=?

Jawab:

(R - r)² = p² -  j²

(R - r)²  = (20cm)² - (16cm)²

13cm - r = 12cm

r = 1cm ... (pilihan B)

18.

Dik: Singgung luar

D = 15cm, R = 7,5cm

d = 10cm, r = 5cm

p = 70cm

Dit: j=?

Jawab:

j² = p² - (R - r)²

j² = (70cm)² - (7,5cm - 5cm)²

j ≈ 69cm ... (pilihan A)

19.

Dik: Singgung dalam

j = 10cm, p = 8cm

Dit: p=?

Jawab:

(R + r)² = p² -  j²

(R + r)²  = (10cm)² - (8cm)²

R + r  = 6cm

R = 5cm dan r = 1cm ... (pilihan B)

20.

Dik: Singgung dalam

p = 20cm, j = 16cm, r1 = 10cm

Dit: p=?

Jawab:

(r1 + r2)² = p² -  j²

(10cm + r2)²  = (20cm)² - (16cm)²

10cm + r2  = 12cm

r2 = 2cm ... (pilihan A)

Kesimpulan

Pelajari lebih lanjut

-----------------------------

Detil Jawaban

Kelas : VIII/8 (2 SMP)

Mapel : Matematika

Bab : Bab 7 - Lingkaran

Kode : 8.2.7

Kata Kunci : lingkaran, juring, busur, sudut pusat, sudut keliling, persinggungan lingkaran

===


32. Jawaban uji kompetensi 7 matematika kelas 8 semester 2 kurtilas


Jawaban Uji Kompetensi 7 Matematika Kelas 8 Semester 2 PG

Jawaban Pendahuluan

Soal matematika di atas merupakan materi dari lingkaran.

Pembahasan

Lingkaran adalah suatu geometri bidang atau bangun datar dimana terdapat kumpulan titik-titik yang mempunyai jarak yang bernilai sama atau tetap terhadap titik tunggal yang bersifat semu, sehingga titik-titik tersebut membentuk garis tertutup berupa lengkungan dalam satu putaran penuh secara berulang-ulang.

Pada suatu bidang lingkaran, terdapat jari-jari lingkaran (r) dan diameter lingkaran (d), sehingga bentuk persamaannya yaitu r = d/2 atau d = 2r. Rumus umum lingkaran adalah dengan menggunakan nilai konstanta pi/phi yang dinotasikan dalam π yang mempunyai nilai bilangan riil yang mendekati bilangan pecahan 22/7 dan bilangan desimal 3,14 sehingga ditulis menjadi π ≈ 22/7 ≈ 3,14.

Rumus menghitung keliling lingkaran

K = π ⋅ 2r

K = π ⋅ d

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

K busur = π ⋅ d  ⋅ (m∠ / 360° )

Rumus menghitung luas lingkaran

L = π ⋅ r ⋅ r = π ⋅ r²

L = π ⋅ d/2 ⋅ d/2 = π ⋅ d²/4

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

L juring = π ⋅ d²/4  ⋅ (m∠ / 360° )

Rumus untuk menghitung garis singgung persekutuan dua lingkaran adalah dengan menggunakan teorema Pythagoras, dimana j adalah garis singgung luar atau dalam lingkaran, p adalah jarak antara kedua titik pusat lingkaran, dan R dan r sebagai jari-jari lingkaran besar dan kecil.

Rumus garis singgung luar lingkaran

j² = p² - (R - r)²

Rumus garis singgung dalam lingkaran

j² = p² - (R + r)²

1.

Dik: Juring @ m∠ pusat = 90°, L = 78,5cm² (π = 3,14)

Dit: r=?

Jawab:

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

78,5cm² = 3,14 ⋅ r²  ⋅ (90°  / 360° )

100cm²  = r²

r = 10cm ... (pilihan A)

2.

Dik: Busur @ K = 22cm, m∠ pusat = 120° (π = 22/7)

Dit: r=?

Jawab:

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

22cm = 22/7 ⋅ 2r ⋅ (120° / 360° )

r = 10,5cm ... (pilihan tidak ada)

3.

Dik: Busur @ K = 16,5cm, d = 42cm (π = 22/7)

Dit: m∠ pusat=?

Jawab:

K busur = π ⋅ d ⋅ (m∠ / 360° )

16,5cm = 22/7 ⋅ 42cm ⋅ (m∠ / 360° )

m∠ = 45°  ... (pilihan A)

4.

Dik: Juring @ L = 57,75cm², m∠ pusat = 60°  (π = 22/7)

Dit: d=?

Jawab:

L juring = π ⋅ r²  ⋅ (m∠ / 360° )

57,75cm² = 22/7 ⋅ r²  ⋅ (60°  / 360° )

110,25cm² = r²

r = 10,5cm  ... (pilihan B)

5.

Dik: Busur @ r = 21cm, m∠ pusat = 30°  (π = 22/7)

Dit: K=?

Jawab:

K busur = π ⋅ 2r ⋅ (m∠ / 360° )

K busur = 22/7 ⋅ 2(21cm) ⋅ (30° / 360° )

K busur = 11cm  ... (pilihan A)

6.

Dik: Lingkaran O

Dit: m∠BAD=?

Jawab:

2 ⋅ Sudut keliling = Sudut pusat

2 ⋅ m∠BAD = 110°

m∠BAD = 55° ... (pilihan A)

7.

Dik: Lingkaran O

Dit: m∠AOB=?

Jawab:

m∠APB + m∠AQB + m∠ARB = 144°

3 ⋅ Sudut keliling = 144°

Sudut keliling = 48°

2 ⋅ Sudut keliling = Sudut pusat

2 ⋅ 48° = m∠AOB

m∠AOB = 96°  ... (pilihan tidak ada)

8.

Dik: Lingkaran @ d = 0,6m

Jarak = 10000km = 10000000m

Dit: Putaran=?

Jawab:

K lingkaran * putaran = jarak

π ⋅ d * n  = 10000000m

3,14 ⋅ 0,6m * n  = 10000000m

n ≈ 5000000  ... (pilihan D)

9.

Dik: Persegi @ s = 26cm

2 buah 1/4 lingkaran @ r = 14cm

Dit: K arsir=?

Jawab:

K = K persegi + K lingkaran

K = 4s + 2 ⋅ 1/4 ⋅ π ⋅ 2r

K = 4(26cm) + 1/2 ⋅ 22/7 ⋅ 2(14cm)

K = 158cm ... (pilihan C)

10.

Dik: Persegi @ s = 14cm

1/2 lingkaran @ d = 14cm, r = 7cm

Dit: L arsir=?

Jawab:

L = L persegi + L lingkaran

L = s²  + 1/2 ⋅ π ⋅ r²

L = (14cm)² + 1/2 ⋅ 22/7 ⋅ (7cm)²

L = 273cm² ... (pilihan C)

11.

Dik: Singgung luar

j = 12cm, rC = 7,5cm, rD = 4cm

Dit: p=?

Jawab:

p² = j² + (rC - rD)²

p² = (12cm)² + (7,5cm - 4cm)²

p = √156,25 cm²

p = 12,5cm ... (pilihan A)

12.

Dik: Singgung dalam

p = 7,5cm, rA = 2,5cm, rB = 2cm

Dit: j=?

Jawab:

j² = p² - (rA + rB)²

j² = (7,5cm)² - (2,5cm + 2cm)²

j = √36 cm²

j = 6cm ... (pilihan C)

13.

Dik: Singgung luar

R = 1,5cm, p = 2,5cm, j = 2,4cm

Dit: j=?

Jawab:

(R - r)² = p² -  j²

(1,5cm - r)²  = (2,5cm)² - (2,4cm)²

(1,5cm - r) ²  = 0,49cm²

1,5cm - r  = 0,7cm

r = 0,8cm ... (pilihan B)

14.

Dik: Singgung luar

R = 19cm, r = 10cm, j = 40cm

Dit: p=?

Jawab:

p² = j² + (R - r)²

p² = (40cm)² + (19cm - 10cm)²

p = √1681cm²

p = 41cm ... (pilihan A)

15.

Dik: Singgung luar

p = 17cm, j = 15cm

Dit: p=?

Jawab:

(R - r)² = p² -  j²

(R - r)²  = (17cm)² - (15cm)²

R - r = 8cm

R = 10cm dan r = 2cm ... (pilihan D)

16.

Dik: Singgung luar

p = 15cm, j = 12cm

Dit: p=?

Jawab:

(R - r)² = p² -  j²

(R - r)²  = (15cm)² - (12cm)²

R - r = 9cm

R = 12cm dan r = 3cm ... (pilihan B)

17.

Dik: Singgung luar

r1 = 13cm, p = 20cm, j = 16cm

Dit: r2=?

Jawab:

(R - r)² = p² -  j²

(R - r)²  = (20cm)² - (16cm)²

13cm - r = 12cm

r = 1cm ... (pilihan B)

18.

Dik: Singgung luar

D = 15cm, R = 7,5cm

d = 10cm, r = 5cm

p = 70cm

Dit: j=?

Jawab:

j² = p² - (R - r)²

j² = (70cm)² - (7,5cm - 5cm)²

j ≈ 69cm ... (pilihan A)

19.

Dik: Singgung dalam

j = 10cm, p = 8cm

Dit: p=?

Jawab:

(R + r)² = p² -  j²

(R + r)²  = (10cm)² - (8cm)²

R + r  = 6cm

R = 5cm dan r = 1cm ... (pilihan B)

20.

Dik: Singgung dalam

p = 20cm, j = 16cm, r1 = 10cm

Dit: p=?

Jawab:

(r1 + r2)² = p² -  j²

(10cm + r2)²  = (20cm)² - (16cm)²

10cm + r2  = 12cm

r2 = 2cm ... (pilihan A)

Kesimpulan

Pelajari lebih lanjut

-----------------------------

Detil Jawaban

Kelas : VIII/8 (2 SMP)

Mapel : Matematika

Bab : Bab 7 - Lingkaran

Kode : 8.2.7

Kata Kunci : lingkaran, juring, busur, sudut pusat, sudut keliling, persinggungan lingkaran

===


33. uji kompetensi 6 matematika kls 7 semester 2 no 8 dan 10​


Penjelasan dengan langkah-langkah:

maaf soalnya yang mana ya


34. Uji kompetensi 7 matematika kelas 8 semester 2 yang no 6 caranya bagaimana yaa? tolOng bantu ya teman":) terimakasihh​


sudut AEB = sudut ACB = sudut AEB = 62°

(sudut keliling yg menghadap busur yg sama : busur AB)

sudut ABC = 90° (sudut keliling yg menghadap diameter)


35. Jawaban Matematika kelas 7 semester 2 uji kompetensi 5 halaman 53 no 5 dan 6


Jawaban:

no

5.c 60 jam

6.a 28 hari

Penjelasan dengan langkah-langkah:

5 penyelesaian

diketahui pak hendra digaji Rp.360.000,00 untuk pelatihan selama 3 jam.kemudian,dengan menggunakan perbandingan senilai kita dapat menentukan lamnya pelatihan bila mendapatkan gaji Rp.7.200.000,00

Rp.360.000->3 jam

Rp.7.200.000->x jam

360.000. 3

-------------- = -------

7.200.000. x

<->360.000 dikalikan dengan x.=7.200.000x3

<->360.000x=21.600.000

<->. x=21.600.000

-----------------

360.000

<-> x=60

jadi, jika pak hendra digaji Rp 360.000,00 untuk pelatiahan selama 3 jam, maka pak hendra digaji Rp 7.200.000 untuk pelatihan selama 60 jam.

6)penyelesaian:

diketahui:

7 pekerja, selesai 16 hari

3 pekerja ditugaskan ditempat lain

ditanya:

lama waktu yang bisa diselesaikan olr pekerja yang tersisa adalah?

jawab:

7. x

— = —

4. 16

4dikali x=7x16

4x=112

x=112:4

x=28

jadi waktu yang dibutuhkan oleh pekerja adalah 28 hari


36. jawaban dan cara uji kompetensi 7 kelas 7 semester 2​


11)

x = 180 - 120

x = 60 derajat

12)

x = 180 - 83

x = 97 derajat

y = 115 derajat

z = 75 derajat

13)

Sudut AEB

= 180 - 112

= 68 derajat

Sudut BAE = Sudut CDE

= 180 - 60 - 68

= 120 - 68

= 52 derajat

14)

90 - 30

= 60 derajat

90 - 50

= 40 derajat

a = 180 - 60 - 40

a = 80 derajat

Sekian dan terima kasih


37. jawaban dan cara uji kompetensi 7 kelas 7 semester 2​


Pelajaran : Matematika

KELAS : 7

Jadikan jawaban tercerdas ya

makasih


38. Uji kompetensi 7 matematika kelas 8 semester 2​


1. Jari - jari lingkarannya adalah 10 cm

2. Jari - jari lingkarannya adalah 10,5 cm

3. Sudut pusatnya adalah 45°

4. Jari - jari lingkarannya adalah 10,5 cm

Lingkaran adalah himpunan semua titik di bidang datar yang berjarak sama dari suatu titik tetap di bidang tersebut.

Juring lingkaran adalah potongan atau bagian dari luas lingkaran jadi juring adalah luasan yang dibatasi busur dengan dua buah jari - jari. Juring adalah potongan dari luas lingkaran.

Busur lingkaran adalah garis berbentuk lengkung pada tepian lingkaran. Busur adalah potongan dari keliling lingkaran.

PEMBAHASAN :

1. Diketahui suatu juring lingkaran dengan ukuran sudut pusat 90°. Jika luas juring tersebut adalah 78,5 cm², maka sebelum kita menentukan panjang jari - jari lingkaran tersebut, kita akan menghitung luas lingkaran penuhnya karena luas juring adalah seperbagian dari luas lingkaran.

Sudut pusat juring = 90°. Dan sudut lingkaran penuh adalah 360°. Sehingga untuk mengubah luas juring ke luas lingkaran penuh, luas juring tersebut harus dikali :

360° ÷ 90° = 4 karena 90° adalah ¼ dari 360°.

Maka, luas lingkaran penuhnya adalah : 4 × luas juring

= 4 × 78,5 cm²

= 314 cm²

Sedangkan luas lingkaran dihitung dengan : π × r².

Jadi, luas lingkaran = π × r²

314 = 3,14 × r²

r² = 314 ÷ 3,14

r² = 100

r = √100

r = jari - jari lingkarannya = 10 cm

2. Diketahui panjang busur suatu lingkaran adalah 22 cm. Jika sudut pusat yang menghadap busur tersebut berukuran 120°, maka sebelum menghitung jari - jari lingkarannya, kita akan menghitung lingkaran penuhnya karena panjang busur merupakan seperbagian dari keliling lingkaran.

Sudut pusat yang menghadap busur = 120°. Sedangkan sudut lingkaran penuh = 360°. Maka, untuk mengetahui keliling lingkaran penuhnya, kita harus mengalikan panjang busur tersebut sebanyak :

360° ÷ 120° = 3 kali karena 120° adalah ⅓ dari sudut lingkaran penuh. Sehingga keliling lingkaran penuhnya adalah :

3 × 22 cm = 66 cm. Sedangkan keliling lingkaran dihitung dengan rumus : 2 × π × r.

Jadi, keliling lingkaran = 2 × π × r

66 cm = 2 × 22/7 × r.

r = 66 ÷ 44/7

r = (66 × 7) ÷ 44

r = jari - jari lingkarannya = 10,5 cm

3. Diketahui panjang busur suatu lingkaran adalah 16,5 cm. Jika panjang diameter lingkaran tersebut adalah 42 cm, maka sebelum kita menentukan sudut pusat yang menghadap busur tersebut, terlebih dahulu kita hitung keliling lingkaran penuhnya.

Keliling lingkaran = π × d

= 22/7 × 42

= 132 cm.

Sudut pusat yang menghadap ke suatu busur dapat dihitung dengan membandingkan panjang busur dan keliling lingkaran kemudian dikali 360°. Sehingga,

16,5 / 132 × 360°

= 45°

4. Diketahui suatu juring lingkaran memiliki luas 57,75 cm². Jika besar sudut pusat yang bersesuaian dengan juring tersebut adalah 60°, maka sebelum kita menghitung jari - jari lingkarannya, kita akan hitung luas lingkaran penuhnya terlebih dahulu.

Sudut yang bersesuaian dengan juring = 60°, sedangkan sudut lingkaran penuh = 360°. Maka, luas lingkaran penuhnya adalah hasil dari luas juring dikali :

360° ÷ 60° = 6, karena 60° adalah 1/6 dari 360°.

Luas lingkaran penuh = 6 × 57,75 cm²

= 346,5 cm².

Sedangkan, luas lingkaran dihitung dengan : π × r².

Jadi, luas lingkaran = π × r²

346,5 cm² = 22/7 × r²

r² = 346,5 ÷ 22/7

r² = 346,5 × 7/22

r² = 110,25

r = √110,25

r = 10,5 cm

Pelajari lebih lanjut :

Tentang menghitung jari - jari dari luas juring

https://brainly.co.id/tugas/14818153

https://brainly.co.id/tugas/14833557

Tentang menghitung jari - jari dari panjang busur

https://brainly.co.id/tugas/15170404

https://brainly.co.id/tugas/14279733

Tentang menentukan sudut pusat juring

https://brainly.co.id/tugas/14633331

https://brainly.co.id/tugas/14829909

DETAIL JAWABAN

MAPEL : MATEMATIKA

KELAS : VIII

MATERI : LINGKARAN

KATA KUNCI : JURING LINGKARAN, PANJANG. USUR, KELILING LINGKARAN, LUAS LINGKARAN, JARI - JARI LINGKARAN, SUDUT PUSAT JURING, SUDUT LINGKARAN PENUH

KODE SOAL : 2

KODE KATEGORISASI : 8.2.7


39. jawaban matematika kelas 7 semester 2 uji kompetensi 5 halaman 54​


Jawaban:

1. Terdapat 42 siswa yang mengikuti kelas paduan suara. 31 siswa yang mengikuti kelas paduan suara adalah perempuan. Di antara proporsi berikut yang digunakan untuk menentukan x, yakni persentase siswa laki-laki yang mengikuti kelas paduan suara adalah….

Jawaban: D

x = 42 – 31/42 x 100

x = 11/42 x 100

x/100 = 11/42 atau 11/42 = x/100

2. Rasio waktu yang diluangkan Karina untuk mengerjakan tugas Matematika terhadap tugas IPA adalah 5 banding 4. Jika dia meluangkan 40 menit untuk menyelesaikan tugas Matematika, maka waktu yang dia luangkan untuk menyelesaikan tugas IPA adalah….

Jawaban: B

IPA = 4/5 x 40 menit

= 4 x 8 menit = 32 menit

3. Sebuah mesin di suatu pabrik minuman mampu memasang tutup botol untuk 14 botol dalam waktu 84 detik. Banyak botol yang dapat ditutup oleh mesin dalam waktu 2 menit adalah….

Jawaban: B

Botol = 2 menit/84 detik x 14 botol

= 120 detik/84 detik x 14 botol

= 120/6 botol

= 20 botol

4. Pak Chandra membeli kapal motor. Jika kapal motor yang beliau miliki dikendarai dengan kecepatan 32 km per jam dan menempuh jarak 80 km, kapal motor tersebut membutuhkan 24 liter solar. Pada kecepatan yang sama, solar yang dibutuhkan Pak Chandra untuk menempuh perjalanan sejauh 120 km adalah .... liter

Jawaban: -

Solar = 120/80 x 24 liter

= 1,5 x 24 liter

= 36 liter

5. Pak Hendra digaji Rp360.000,00 selama 3 jam untuk memberikan pelatihan di tempat kursus. Waktu yang Pak Hendra gunakan untuk pelatihan jika beliau mendapatkan gaji Rp7.200.000,00 adalah….

Jawaban: C

Waktu = 7.200.000/360.000 x 3 jam

= 20 x 3 jam

= 60 jam

6. Suatu pekerjaan dapat diselesaikan selama 16 hari oleh 7 orang. Jika 3 pekerja ditugaskan ke pekerjaan lain, lama waktu yang bisa diselesaikan oleh pekerja yang tersisa adalah….

Jawaban: A

Waktu = 7/4 x 16 hari

= 7 x 4 hari

= 28 hari

7.  5 ons meises cokelat dijual seharga Rp10.000,00. Di antara grafik berikut yang menunjukkan hubungan antara berat dan harga meises cokelat yang dijual adalah….

Jawaban: D

8.  (Soal selengkapnya lihat di buku) Penggunaan BBM yang dibutuhkan mobil Pak Bambang dari Medan sampai Padang adalah….

Jawaban: -

BBM = 358 + 370/20 liter

= 728/20 liter

= 36,4 liter

9. Jamila adalah seorang perancang busana muda. Dia ingin membuka toko yang khusus menjual baju rancangannya di sebuah ruko. Dia menggambar rancangan toko seperti berikut.

Skala 1/2 in = 3 meter. Lebar toko pada gambar adalah 2 in. Lebar toko sebenarnya yang ingin dibuat Jamila adalah …. meter.

Jawaban: D

Lebar = 2/ 1/2 x 3 meter

= 4 x 3 meter = 12 meter

10. Pak Ikhsan mengendarai mobil dari rumahnya ke kota tempat beliau bekerja sejauh 276 mil dengan kecepatan rata-rata 62 mil per jam…. (soal selengkapnya lihat di buku).

Jawaban: D

kecepatan saat pulang = 276/6,5 = 42,46 mil/jam

Kecepatan saat berangkat = 62 mil/jam.


40. jawaban uji kompetensi 8 matematika kelas 7 semester 2 halaman 289- 298​


Jawab:

1. C. 120 mm

2. A. 125 × 100

3. B. 32 × 40

4. B. 4,25 cm

5. D. 4,75 cm

6. A. Gambar (a)

7. A. 20 cm

8. C. 34 cm2

9. A. 16 cm2

10. C. 140 m2

11. B. 7,2 cm

12. C. 80

13. C. 80°

14. C. 120

15 C. 9 cm

16. D. 3, 2, 1, 4

17. C. 6 M

18. C. 144 m2

19. D. 72 cm2

20. D. 20√2


Video Terkait

Kategori matematika